Рубрика «GAN» - 3

Привет! Представляю вашему вниманию перевод статьи «Facial Surface and Texture Synthesis via GAN».

Когда у исследователей имеется недостаток реальных данных, зачастую они прибегают к аугментации данных, как способу расширить имеющийся датасет. Идея состоит в том, чтобы модифицировать имеющийся тренировочный датасет таким образом, чтобы оставить семантические свойства нетронутыми. Не такая уж тривиальная задача, если речь идет о человеческих лицах.
Читать полностью »

Когда-либо слышали о «deepfakes»? ИИ, который накладывает лицо одного человека на тело другого, использовали для замены Харрисона Форда на Николаса Кейджа в бесчисленных видеоклипах, а также и для более гнусных целей: знаменитости без их ведома появились в порно и пропаганде. Теперь, к лучшему или худшему, исследователи из Университета Carnegie Mellon разработали новую, более мощную и универсальную систему.

Читать полностью »

Впервые идея GAN была опубликована Яном Гудфеллоу Generative Adversarial Nets, Goodfellow et alб 2014, после этого GAN'ы являются одними из лучших генеративнх моделей.

Как и у любой другой генеративной модели задача GAN построить модель данных, а если более конкретно научиться генерировать семплы из распределения максимально близкого к распределению данных (обычно имеется датасет ограниченного размера, распределение данных в котором мы хотим промоделировать).

GAN’ы огромным количеством достоинств, но у них есть один существенный недостаток – их очень сложно обучать.

В последнее время вышел ряд работ посвященных устойчивости GAN:

Вдохновившись их идеями, я сделал небольшое свое исследование. Читать полностью »

Сегодня, хочу рассказать об интересном подходе по улучшению качества изображения. Официальное название подхода Super Resolution. Улучшение качества изображения программными методами известно с начала появления цифровых снимков, но в последние 3 года произошёл качественный скачок, вызванный использованием нейронных сетей.

Улучшение качества изображения с помощью нейронной сети - 1

Пример улучшения качества изображения с использованием технологии Super Resolution.
Читать полностью »

Смена пола и расы на селфи с помощью нейросетей - 1

Привет! Сегодня я хочу рассказать вам, как можно изменить свое лицо на фото, используя довольно сложный пайплайн из нескольких генеративных нейросетей и не только. Модные недавно приложения по превращению себя в даму или дедушку работают проще, потому что нейросети медленные, да и качество, которое можно получить классическими методами компьютерного зрения, и так хорошее. Тем не менее, предложенный способ мне кажется очень перспективным. Под катом будет мало кода, зато много картинок, ссылок и личного опыта работы с GAN'ами. Читать полностью »

Учим робота готовить пиццу. Часть 2: Состязание нейронных сетей - 1

Содержание

В прошлой части, удалось распарсить сайт Додо-пиццы и загрузить данные об ингредиентах, а самое главное — фотографии пицц. Всего в нашем распоряжении оказалось 20 пицц. Разумеется, формировать обучающие данные всего из 20 картинок не получится. Однако, можно воспользоваться осевой симметрией пиццы: выполнив вращение картинки с шагом в один градус и вертикальным отражением — позволяет превратить одну фотографию в набор из 720 изображений. Тоже мало, но всё же попытаемся.

Попробуем обучить Условный вариационный автоэнкордер (Conditional Variational Autoencoder), а потом перейдёт к тому, ради чего это всё и затевалось — генеративным cостязательным нейронным сетям (Generative Adversarial Networks).

Читать полностью »

Нейросетевая игра в имитацию - 1 Здравствуйте, коллеги. В конце 1960-ых годов прошлого века Ричард Фейнман прочитал в Калтехе курс лекций по общей физике. Фейнман согласился прочитать свой курс ровно один раз. Университет понимал, что лекции станут историческим событием, взялся записывать все лекции и фотографировать все рисунки, которые Фейнман делал на доске. Может быть, именно после этого у университета осталась привычка фотографировать все доски, к которым прикасалась его рука. Фотография справа сделана в год смерти Фейнмана. В верхнем левом углу написано: "What I cannot create, I do not understand". Это говорили себе не только физики, но и биологи. В 2011 году, Крейгом Венером был создан первый в мире синтетический живой организм, т.е. ДНК этого организма создана человеком. Организм не очень большой, всего из одной клетки. Помимо всего того, что необходимо для воспроизводства программы жизнедеятельности, в ДНК были закодированы имена создателей, их электропочты, и цитата Ричарда Фейнмана (пусть и с ошибкой, ее кстати позже исправили). Хотите узнать, к чему эта прохладная тут? Приглашаю под кат, коллеги.

Читать полностью »

Генеративные модели от OpenAI - 1

Эта статья посвящена описанию четырех проектов, объединенных общей темой усовершенствования и применения генеративных моделей. В частности, речь пойдет о методах обучения без учителя и GAN.
 
Помимо описания нашей работы, в этой статье мы хотели бы подробнее рассказать о генеративных моделях: их свойствах, значении и возможных перспективах развития.
 
Читать полностью »

Содержание

В позапрошлой части мы создали CVAE автоэнкодер, декодер которого умеет генерировать цифру заданного лейбла, мы также попробовали создавать картинки цифр других лейблов в стиле заданной картинки. Получилось довольно хорошо, однако цифры генерировались смазанными.
В прошлой части мы изучили, как работают GAN’ы, получив довольно четкие изображения цифр, однако пропала возможность кодирования и переноса стиля.

В этой части попробуем взять лучшее от обоих подходов путем совмещения вариационных автоэнкодеров (VAE) и генеративных состязающихся сетей (GAN).

Подход, который будет описан далее, основан на статье [Autoencoding beyond pixels using a learned similarity metric, Larsen et al, 2016].

Автоэнкодеры в Keras, Часть 6: VAE + GAN - 1

Иллюстрация из [1]
Читать полностью »

Содержание

(Из-за вчерашнего бага с перезалитыми картинками на хабрасторейдж, случившегося не по моей вине, вчера был вынужден убрать эту статью сразу после публикации. Выкладываю заново.)

При всех преимуществах вариационных автоэнкодеров VAE, которыми мы занимались в предыдущих постах, они обладают одним существенным недостатком: из-за плохого способа сравнения оригинальных и восстановленных объектов, сгенерированные ими объекты хоть и похожи на объекты из обучающей выборки, но легко от них отличимы (например, размыты).

Этот недостаток в куда меньшей степени проявляется у другого подхода, а именно у генеративных состязающихся сетейGAN’ов.

Формально GAN’ы, конечно, не относятся к автоэнкодерам, однако между ними и вариационными автоэнкодерами есть сходства, они также пригодятся для следующей части. Так что не будет лишним с ними тоже познакомиться.

Коротко о GAN

GAN’ы впервые были предложены в статье [1, Generative Adversarial Nets, Goodfellow et al, 2014] и сейчас очень активно исследуются. Наиболее state-of-the-art генеративные модели так или иначе используют adversarial.

Схема GAN:

Автоэнкодеры в Keras, Часть 5: GAN(Generative Adversarial Networks) и tensorflow - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js