Если поискать в интернете схемы подключения оптронов, то можно обнаружить, что в подавляющем большинстве случаев предлагается просто добавить резистор. Это самая простая схема, она же и самая медленная. Когда скорость реакции не устраивает, предлагается ставить более быстрый оптрон, но, во-первых, быстрые оптроны - это дорого, и во-вторых, почему бы не разогнать быстрый оптрон до ещё большей скорости?
Рубрика «гальваническая развязка»
Разгоняем оптрон до сотни
2021-04-06 в 14:40, admin, рубрики: diy или сделай сам, гальваническая развязка, оптрон, полевые транзисторы, Производство и разработка электроники, Разработка систем связи, робототехникаКак одним движением сжечь 10000$ и получить удар током
2021-01-19 в 16:33, admin, рубрики: diy или сделай сам, гальваническая развязка, инженерные системы, источники питания, осциллограф, Производство и разработка электроники, сеть 230 В, схемотехника, Электроника для начинающих
Представим себе в сущности довольно-таки заурядную ситуацию: у вас сломался сетевой источник питания. Вы берете в руки мультиметр и измеряете напряжение на входе и выходе источника. На входе у вас честные 230 В переменного тока из розетки, а на выходе по нулям. Вы знаете, что ваш источник питания – импульсный, и вы в курсе про то, что транзисторами источника управляет ШИМ-контроллер, который очень легко идентифицируется на плате.
На столе у вас стоит новенький осциллограф Tektronix DPO 7254 или какой-нибудь LeCroy WavePro 7300A ценою более 10000$, и вы решаете посмотреть с его помощью сигналы ШИМ-контроллера, чтобы диагностировать его исправность или неисправность. На щупе осциллографа написано, что его максимально допустимое напряжение равно 1000 В, это с хорошим запасом больше напряжения в розетке. Непосредственно на самом осциллографе рядом с разъемами для подключению щупов написана цифра 400 V, кроме того, у вас щуп с делителем 1:100, что тоже вселяет уверенность, что все будет в порядке. Вы включаете осциллограф и пробуете подключить его щуп к плате источника питания, однако, как только вы касаетесь щупом осциллографа платы источника питания, проскакивает искра и раздается громкий ба-бах. Экран вашего новенького осциллографа безжизненно потухает, сам осциллограф не реагирует ни на какие кнопки, а комнату заполняет характерный запах сгоревшей электроники. Что же произошло? Почему сгорел осциллограф и как такого избежать? Обо всем этом читайте под катом.
Читать полностью »
Оптическое волокно в промышленных системах связи
2016-08-02 в 13:16, admin, рубрики: POF, автоматизация производства, Блог компании ЭФО, волс, гальваническая развязка, защита от помех, оптическое волокно, оптоволокно, Промышленное программирование, промышленные системы связи, Разработка робототехники, Разработка систем передачи данных, Разработка систем связиВ нашей предыдущей статье мы рассматривали основные типы оптических волокон. Среди всего прочего, обращалось внимание на то, что область применения оптического волокна не ограничивается лишь компьютерными сетями. Растет число областей промышленности, в которых используются волоконно-оптические линии связи (ВОЛС).
Компания «ЭФО» имеет большой опыт в поставке волоконно-оптических компонентов для индустриальных применений. И в этой статье мы рассмотрим основные особенности оптического волокна с точки зрения специфики промышленных условий и приведем некоторые конкретные примеры его применения в разных областях промышленности.
Проектирование маломощного DC-DC для организации дежурного питания. Часть 3
2015-12-17 в 0:07, admin, рубрики: dc-dc, гальваническая развязка, ИБП, ИИП, Производство и разработка электроники Часть 1. http://geektimes.ru/post/267682/
Часть 2. http://geektimes.ru/post/267712/
Пролог
Предыдущими двумя статьями у меня получилось заинтересовать большое количество читателей — а это повод продолжать цикл статей и стараться еще больше. Многие из вас настоятельно уже требуют схемотехнику, ну что же — пора! Это будет достаточно простая статья, в ней будет куча стандартных решений и несколько финтов ушами хитрых схемотехнических решений.
Правда если вы не забыли — моя задача не просто выдать результат для обезьяньего бездумного повторения, а объяснить для чего каждая деталь и объяснить как вообще все это работает. Поэтому ничего чудотворного в этой статье вы точно не увидите расходимся.
Задача, которую необходимо решить
Ни для кого не секрет, что существует такое понятие как гальваническая развязка. Это схемотехнический прием с помощью которого мы электрически изолируем разные части нашей схемы. Чаще всего на практике возникает необходимость подобным образом изолировать развязать высоковольтную входную часть (там где у нас напряжение сети) и низковольтную часть (выходную, где у нас допустим +15 В).
Все это необходимо для того, чтобы в процессе эксплуатации блока питания (DC-DC преобразователи) пользователя просто ебом не токнуло не убило высокое напряжение, которое может оказаться на выходе при какой либо неисправности. Возможна ситуация, когда какой либо силовой транзистор «пробьет» в схеме, он организует КЗ, то есть будет пропускать ток со входа сразу на выход. В схеме где нету гальванической развязки на выходе вместо +15В окажется +310В, думаю разница всем понятна.
Помните! Во всех последующих схемах будет высокое напряжение! Вам стоит очень осторожно работать, если надумаете повторять.
Гальваническая развязка. Кто, если не оптрон?
2015-11-19 в 11:38, admin, рубрики: гальваническая развязка, Железо, изоляция, Интернет вещей, Корпуса и блоки питания, оптрон, цифровой изолятор, Электроника для начинающих, Энергия и элементы питания, метки: гальваническая развязка, изоляция, оптрон, цифровой изолятор
Есть в электронике такое понятие как гальваническая развязка. Её классическое определение — передача энергии или сигнала между электрическими цепями без электрического контакта. Если вы новичок, то эта формулировка покажется очень общей и даже загадочной. Если же вы имеете инженерный опыт или просто хорошо помните физику, то скорее всего уже подумали про трансформаторы и оптроны.
Статья под катом посвящена различным способам гальванической развязки цифровых сигналов. Расскажем зачем оно вообще нужно и как производители реализуют изоляционный барьер «внутри» современных микросхем.