Рубрика «фрактальные свойства»

Аналогии между фракталами и парадоксами

В 90-е годы резко вошла в моду фрактальная геометрия — учение Бенуа Мандельброта о том, что Евклид ошибся, детей в школе учат неправильно, а все формы в мире являюся «на самом деле» не точками, линиями и плоскостями, а фракталами. Природа фрактальна, мысль фрактальна, изображения фрактальны, звуки фрактальны. Весь мир фрактал и люди в нем фракталы (за очень редкими исключениями).

Эта идея меня увлекла, и поэтому, когда я учился на кафедре логики в МГУ, я решил написать диплом о фракталах и придумать фрактальную логику (кафедра логики всё‑таки).

Читать полностью »

Серия «Белый шум рисует черный квадрат»

История цикла этих публикаций начинается с того, что в книге Г.Секей «Парадоксы в теории вероятностей и математической статистике» (стр.43), было обнаружено следующее утверждение:

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 1
Рис. 1.

По анализу комментарий к первым публикациям (часть 1, часть 2) и последующими рассуждениями созрела идея представить эту теорему в более наглядном виде.

Большинству из участников сообщества знаком треугольник Паскаля, как следствие биноминального распределения вероятностей и многие сопутствующие законы. Для понимания механизма образования треугольника Паскаля развернем его детальнее, с развертыванием потоков его образования. В треугольнике Паскаля узлы формируются по соотношению 0 и 1, рисунок ниже.

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 2
Рис. 2.

Для понимания теоремы Эрдёша-Реньи составим аналогичную модель, но узлы будут формироваться из значений, в которых присутствуют наибольшие цепочки, состоящие последовательно из одинаковых значений. Кластеризации будет проводиться по следующему правилу: цепочки 01/10, к кластеру «1»; цепочки 00/11, к кластеру «2»; цепочки 000/111, к кластеру «3» и т.д. При этом разобьём пирамиду на две симметричные составляющие рисунок 3.

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 3
Рис. 3.

Первое что бросается в глаза это то, что все перемещения происходят из более низкого кластера в более высокий и наоборот быть не может. Это естественно, так как если цепочка размера j сложилась, то она уже не может исчезнуть.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js