Рубрика «физика» - 90

Кварки, глюоны и антикварки — это составные части протонов, нейтронов и (по определению) других адронов. Удивительным физическим свойством нашего мира является то, что когда одна из этих частиц выбивается из содержащего её адрона, и летит с большой энергией движения, она остаётся ненаблюдаемой макроскопически. Вместо этого кварк высокой энергии (или глюон, или антикварк) превращается в «брызги» адронов (частиц, состоящих из кварков, антикварков и глюонов). Эти брызги называют «струёй». Отметим, что это справедливо для пяти самых лёгких цветов кварка, но не для верхнего кварка, распадающегося на W-частицу и нижний кварк до того, как может появиться струя.

В статье я примерно опишу как и почему из обладающих высокой энергией кварков, антикварков и глюонов появляются струи.

Это поведение кварков, отличное от поведения заряженных лептонов, нейтрино, фотонов и прочих, происходит из того факта, что кварки и глюоны подвержены действию сильного ядерного взаимодействия, в то время как другие частицы ему не подвержены. Большая часть взаимодействий между двумя частицами становится слабее с увеличением расстояния. К примеру, гравитационное взаимодействие между двумя планетами падает обратно пропорционально квадрату расстояния между ними. То же выполняется для электрического взаимодействия между двумя заряженными объектами, оно также падает как квадрат расстояния. Вы самостоятельно можете потереть надувной шарик, зарядив его статическим электричеством, а потом поднести к голове. Если поднести его ближе, ваши волосы встанут дыбом, но этот эффект быстро исчезает, если отодвинуть шарик дальше.
Читать полностью »

От песка к компьютеру. Часть 1. Атомы и транзисторы - 1
Все мы еще с уроков информатики знаем, что информация внутри компьютера передаётся при помощи нулей и единиц, но оказалось, что большинство айтишников, с которыми я общаюсь (и довольно хороших!) слабо представляют, как же, все-таки, устроен компьютер.
Как заставить песок делать то, чего мы от него хотим?
Для большинства людей познания устройства компьютера оканчиваются на уровне его составных элементов — процессор, видеокарта, оперативная память… Но что именно происходит внутри этих чёрных прямоугольничков после подачи питания — магия. В этой статье (скорей всего, даже серии статей) я постараюсь простым языком объяснить, как же устроены эти таинственные прямоугольнички.
Читать полностью »

Представив, что складки и изгибы оригами — это атомы в решётке, исследователи обнаруживают странное поведение, таящееся в простых структурах

Атомная теория оригами - 1
Майкл Ассис открыл, что оригами может испытывать фазовый переход

В 1970-м астрофизик Корио Миура [Koryo Miura] задумал схему, которой суждено было стать одной из самых известных и хорошо изученных схем складывания оригами: Миура-ори. Узор складок создаёт мозаику из параллелограммов, и вся эта структура складывается и раскладывается одним движением, порождая отличный способ для складывания карты. Это также отличный способ сложить солнечную панель космического корабля — эту идею Миура предложил в 1985 году, а затем она была осуществлена в реальности на японском спутнике Space Flyer Unit в 1995 году.

На земле Миура-ори находит всё больше применений. Система складывания придаёт гибкому листу форму и прочность, создавая многообещающий метаматериал — материал, чьи свойства зависят не от его химического состава, а от структуры. Также Миура-ори отличается отрицательным коэффициентом Пуассона. Если надавить на него с боков, верхняя и нижняя часть оригами будут сдвигаться. Но у большинства объектов такого не происходит — если попробовать сжать, допустим, банан, то с его концов начнёт вылезать содержимое.
Читать полностью »

Эйнштейн. От 16 лет до E=mc² - 1

Наш герой — Альберт Эйнштейн, гений физики, Мэрлин Монро и изобретатель ядерной бомбы, а также многое другое, что ему приписывают.
В прошлой части он успел родиться, поучиться с переменным успехом в школе, бросить обучение и уехать из Германии в 16 лет.
Сегодня мы продолжим изучать его жизнь с помощью картинок и истории, а текущая веха жизни гения — от 16 лет и до E=mc².

Эйнштейн. От 16 лет до E=mc² - 2

Приступим!
Читать полностью »

Физики из MIT разработали портативный детектор мюонов ценой в $100 - 1

Научное оборудование, предназначенное для работы с элементами микромира, обычно сложное и дорогое. Давно прошли те времена, когда ученый при помощи самодельного аппарата из металла, дерева и бечевы мог сделать фундаментальное открытие. Над созданием некоторых систем работают даже не целые институты, а страны, как это происходило в случае с Большим адронным коллайдером.

Спрос на научное оборудование растет, поскольку исследователи проводят все больше экспериментов, да и сами эксперименты становятся сложнее. Это актуально для любых направлений науки, включая физику элементарных частиц. Атмосферу Земли пронизывает высокоэнергетическое космическое излучение, испускаемое далекими Сверхновыми и другими астрофизическими объектами. Когда это излучение проникает в атмосферу планеты, частицы высоких энергий распадаются на мюоны — заряженные микрочастицы, масса которых немногим превышает массу электрона.
Читать полностью »

В центре каждого атома находится ядро, крохотный набор частиц под названием протоны и нейтроны. В этой статье мы изучим природу протонов и нейтронов, состоящих из частиц ещё мельче размером – кварков, глюонов и антикварков. (Глюоны, как и фотоны, являются античастицами сами себе). Кварки и глюоны, насколько нам известно, могут быть по-настоящему элементарными (неделимыми и не состоящими из чего-то мельче размером). Но к ним позже.

Как ни удивительно, у протонов и нейтронов масса почти одинаковая – с точностью до процента:

  • 0,93827 ГэВ/с2 у протона,
  • 0,93957 ГэВ/с2 у нейтрона.

Это ключ к их природе – они на самом деле очень похожи. Да, между ними существует одно очевидное различие: у протона положительный электрический заряд, а у нейтрона заряда нет (он нейтральный, отсюда и его название). Соответственно, электрические силы действуют на первый, но не на второй. На первый взгляд это различие кажется очень важным! Но на самом деле это не так. Во всех остальных смыслах протон с нейтроном почти близнецы. У них идентичны не только массы, но и внутреннее строение.

Поскольку они так похожи, и поскольку из этих частиц состоят ядра, протоны и нейтроны часто называют нуклонами.
Читать полностью »

Кольцо плазмы удалось создать на открытом воздухе - 1Плазму часто называют четвертым агрегатным состоянием материи. Ее изучают десятки лет, но до сих пор у ученых остается множество вопросов относительно свойств плазмы, которые предстоит разрешить. Она используется в некоторых отраслях промышленности, и одно из важнейших способов применения плазмы — энергетика, то есть термоядерный реактор. Ученые стремятся зажечь искусственную звезду прямо в недрах установки, чтобы сделать возможным термоядерный синтез с получением огромного количества энергии.

Если бы удалось добиться создания реактора, то проблема нехватки электроэнергии была бы практически решена. Сейчас ученые всего мира занимаются вопросами формирования стабильного плазменного «очага» термоядерного синтеза. Ранее сообщалось, что у специалистов из Китая получилось зажечь искусственную звезду в термоядерном реакторе и поддерживать ее существование в течение целых 100 секунд. Сейчас ученые из Калифорнийского технологического института смогли создать стабильное кольцо плазмы на открытом воздухе при помощи струи воды и кристаллической пластины.
Читать полностью »

image
Это — hohlraum.

Уникальный комплекс National Ignition Facility — «Национальное Зажигательное Оборудование» в Ливерморской лаборатории имени Лоуренса (США) обеспечивает проведение экспериментов с инерционным термоядерным синтезом. Это — самая мощная лазерная система в мире и уникальный лабораторный комплекс. Все, что касается оборудования и технических решений, заслуживает высших оценок и стоит очень дорого. Читать полностью »

Эйнштейн. От нуля до неизвестности - 1

Мало кто старше 16 лет не знает его имени. Можно плохо учиться в школе и не любить физику, но самый выдающийся ум предыдущего столетия все равно будет тебе известен.

Эйнштейн. От нуля до неизвестности - 2
Его имя стало синонимом гениальности, но с жизнью и становлением гения знакомы не все.
Многие знакомы с его теориями относительности — полная и специальная, но что мы знаем о биографии Эйнштейна? Родился 14 марта 1879 года в Германии, потом уехал в Швейцарию и переехал с США. Обычно на это общественно известная биография Альберта Эйнштейна заканчивается.

Сегодня я попробую рассказать о его детстве и становлении и буду сопровождать тематическими изображениями из биографического комикса.
И начну я, пожалуй, с нуля, а точнее с самого рождения.
Приступим!Читать полностью »

image

После публикации моей статьи о том, какой была бы Земля, будь она в два раза больше, у читателей появился вопрос: «А что насчёт тороидальной Земли»? Вопрос не самый оригинальный, эту тему уже обсуждали в онлайне и проводили её моделирование. Но я люблю всё делать сам, так что я попытался провести свой собственный анализ.

Может ли существовать тороидальная планета?

Стабильность тороидальной планеты неочевидна. С практической точки зрения планеты можно рассматривать как жидкие шарики без поверхностного натяжения – прочность камня не сравнить с весом планеты. Они обладают эквипотенциальными гравитационными поверхностями с учётом центробежного потенциала. Если бы это было не так, то на них встречались бы места, которые могли бы уменьшить свою энергию перетеканием в сторону понижения потенциала. Ещё один очевидный факт – существование верхней границы скорости вращения, после которой планета развалится: центробежная сила на экваторе превышает гравитацию и материал улетает в космос.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js