Рубрика «физика» - 50

Будущее Li-Fi: поляритоны, экситоны, фотоны и немного дисульфида вольфрама - 1

На протяжении многих лет ученые со всего мира занимаются двумя вещами — изобретают и совершенствуют. И порой неясно, что из этого сложнее. Взять, к примеру, обыкновенные светодиоды, которые кажутся нам столь простыми и обыденными, что мы и не обращаем на них внимание. Но если в них добавить немного экситонов, щепотку поляритонов и дисульфид вольфрама по вкусу, светодиоды уже не будут столь прозаичны. Все эти заумные термины являются названиями крайне необычных компонентов, совокупность которых позволила ученым из Городского колледжа Нью-Йорка создать новую систему, способную крайне быстро передавать информацию с помощью света. Данная разработка поможет усовершенствовать технологию Li-Fi. Какие именно ингредиенты новой технологии были использованы, каков рецепт этого «блюда» и какова эффективность работы нового экситон-поляритонного светодиода? Об этом нам поведает доклад ученых. Поехали.Читать полностью »

Путеводитель по Солнечной системе для автостопщиков - 1
Снимки: Земля — Mike Malaska, Венера — Венера-14 (ИКИ РАН), Титан — Гюйгенс (ESA), Марс — Спирит (NASA), Луна — Аполлон-17 (NASA), астероид Итокава — Хаябуса (JAXA), комета Чурюмова-Герасименко — Филы (DLR/CNES), астероид Рюгу — MASCOT (DLR/CNES).

Человека всегда манили неизведанные дали – именно это позволило людям побывать во всех уголках этой планеты и оставить свои следы на 83% её поверхности. Когда неисследованные места на Земле закончились, первопроходцы по-новому взглянули на космос — тот самый «последний рубеж», который сулит нам не просто новые знания, но и бессмертие для человечества в целом. И хотя из всех небесных тел Солнечной системы люди пока смогли посетить лишь одно из них — Луну — да и то в лице всего 12-ти своих представителей, автоматические зонды побывали уже на 8 телах, а ещё на 4-х оставили свои обломки. Давайте взглянем на те условия, которые зафиксировали все эти зонды, на полученные ими снимки, звуки и видео из таких мест, где плавится свинец, текут реки из метана и выбрасывается в космос спирт.Читать полностью »

Вероятность можно представлять себе разными способами. И квантовая механика охватывает их все

Откуда берётся квантовая вероятность - 1

Статья Шона Кэрролла, профессора теоретической физики из Калифорнийского технического института

В философском "Эссе о вероятностях", опубликованном в 1814 году, Пьер-Симон Лаплас ввёл печально известное гипотетическое существо: «обширный интеллект», знающий полное физическое состояние Вселенной. Для такого существа, прозванного поздними комментаторами "демоном Лапласа", не будет никаких загадок относительно случившегося в прошлом или того, что случится в любой момент будущего. В рамках описанной Исааком Ньютоном «вселенной как часового механизма», прошлое и будущее определяются настоящим.
Читать полностью »

Дихалькогениды переходных металлов: раскрытие секретов динамики роста кристаллов WS2 - 1

«Ну что, попробовали? А теперь смотрите инструкцию». Эта шутка описывает нежелание некоторых людей сначала узнать что и как делать по инструкции, а уже потом приступать к работе/сборке/монтажу. В мире сложных научных изысканий, открытий и исследований такое также часто происходит, хоть и не по воле ученых. Некоторые процессы, результаты которых всем вроде понятны и очевидны, остаются плохо исследованными, из-за чего их сложно совершенствовать. Ярким представителем таких процессов является формирование дихалькогенидов переходных металлов. Однако от любопытного взора ученых ничего не скроется. Так, ученым Тошиаки Като и Тоширо Канеко удалось воочию наблюдать процесс синтеза дихалькогенидов переходных металлов, которые представляют собой полупроводниковые пластины толщиной в несколько атомов. Что такого необычного в этих дихалькогенидах переходных металлов, как ученым удалось раскрыть их секреты и что это значит для мира полупроводников? Об этом мы узнаем из доклада исследовательской группы. Поехали.Читать полностью »

Пару дней назад в сеть утек черновик статьи от Google о достижения ими квантового превосходства в сверхпроводящем квантовом компьютере. Сам текст быстро убрали, а вокруг него множатся слухи и предположения, в том числе и ошибочные. Автор поста — профессор Скотт Ааронсон — один из главных специалистов по квантовым алгоритмам, и ведет отличный блог. В последнем посте он отвечает на главные вопросы о квантовом превосходстве.

Превосходный FAQ о квантовом превосходстве от Скотта Ааронсона - 1
Читать полностью »

Антивещество — штука достаточно популярная, как в научной фантастике, так и просто в околонаучных спорах о том, “как все устроено на самом деле”. Фантасты нам подарили звезды и целые планетные системы из антивещества. Дэн Браун через “Ангелов и демонов” донес этот феномен практически до каждого.
В общем, вымыслов и домыслов предостаточно. В статье немного окунемся в историю: как почти чистая математика предсказала такой феномен, как им пытались «пренебречь», до тех пор, пока антивещество само не залетело в детекторы. Потом пробежимся по тому, что известно сейчас и дойдем до самой большой головной боли физиков — почему вещества во Вселенной оказалось больше, чем антивещества?

image

Читать полностью »

На Хабре периодически появляются статьи и комментарии о чудесах квантовой физики: квантовом ластике и слабых измерениях. К сожалению, слишком часто о них говорят как о загадочных и непонятных явлениях, позволяющих творить чуть ли не магию, хотя на самом деле нет в них ровным счетом ничего удивительного. В этом посте я перевожу статью Шона Кэрролла о квантовом ластике с отложенным выбором. Пусть он будет отправной точкой для обсуждения в комментариях всяких хитростей квантовой механики.

Назад в будущее? Квантовый ластик с отложенным выбором - 1

Читать полностью »

Живое разноцветное желе: принятие решений на уровне материала без участия центрального процессора - 1

Вдохновением для ученых может быть все что угодно. А если говорить о представителях флоры и фауны, то они лидеры в списках муз, вдохновивших великие умы на создание самых разных устройств, машин и целых технологий. Сегодня мы познакомимся с исследованием, вдохновителем которого стало существо, «рукопожатие» с которым заняло бы некоторое время — осьминог. Ученые из университета штата Северная Каролина решили создать устройство, которое подобно конечностям осьминога, сможет обрабатывать информацию и принимать решения на уровне материала и без централизованного компьютера. Из чего состоит это устройство, какие функции оно уже умеет выполнять и каковы перспективы «мягкой тактильной логики»? Об этом мы узнаем из доклада исследовательской группы. Поехали.Читать полностью »

Привет!

Тут мы опишем работу некоторого поля а затем сделаем пару красивых фичей (тут все ОЧЕНЬ просто).

Элементарная симуляция кастомного физического взаимодействия на python + matplotlib - 1

Что будет в этой статье.

Общий случай:

  1. Опишем базу, а именно работу с векторами (велосипед для тех, у кого нет под рукой numpy)
  2. Опишем материальную точку и поле взаимодействия

Частный случай (на основе общего):

  1. Сделаем визуализацию векторного поля напряженности электромагнитного поля (первая и третья картинки)
  2. Сделаем визуализацию движения частиц в электромагнитном поле

Встретимся под катом!
Читать полностью »

Парамагноны и магноны: энергия из тепла - 1

Оглянитесь вокруг, что вы видите? Дома, машины, деревья, людей и т.д. Все куда-то бегут, все куда-то спешат. Город, напоминающий муравейник, особенно в час пик, всегда наполнен движением. И такая же картина наблюдается не только в «большом» мире, но и на атомарном уровне, где неисчислимое множество частиц движутся навстречу друг другу, сталкиваются, отдаляются и вновь находят нового партнера для своего невероятно сложного и порой столь кратковременно танца. Отбросим в сторону утрирование и поэтичность и поговорим сегодня об исследовании, в котором международная команда ученых из университета штата Северная Каролина, Ок-Риджской национальной лаборатории, университета штата Огайо и Китайской академии наук доказали, что парамагноны могут преобразовывать разницу температур в электрическое напряжение. Что такое парамагноны, в чем их уникальная особенность, как ученые реализовали свой необычный «генератор» и насколько он эффективен? Об этом мы узнаем из доклада исследовательской группы. Поехали.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js