Привет! Меня зовут Анна Щеникова, я аналитик в Центре RnD в МТС Диджитал. Ко мне часто приходят задачи, где нужно использовать open-source LLM. Сразу же встает вопрос: а как адаптировать имеющуюся модель под конкретный кейс?
Рубрика «Fine-tuning»
От промптов к дообучению: четыре уровня адаптации open-source моделей
2024-08-22 в 13:26, admin, рубрики: Fine-tuning, genai, open-source llm, rag, искусственный интеллект, машинное обучение, промпт-инжинирингКак дообучать LLM с помощью Supervised Fine-Tuning
2024-08-12 в 13:34, admin, рубрики: data annotation, data labeling, dataset, Fine-tuning, llm, SFT, машинное обучение, разметка данныхОбычно большие языковые модели (large language model, LLM) обучают в несколько этапов, включающих предварительное обучение и множество этапов fine-tuning (см. ниже). Предварительное обучение — это дорогостоящий процесс (например, требующий многих сотен тысяч долларов на вычислительные ресурсы), однако fine-tuning модели LLM (или контекстное обучение) по сравнению с этим гораздо дешевле (например, сотни долларов или даже меньше). Учитывая широкую доступность и бесплатность (даже для коммерческого использования) предварительно обученных LLM (например, MPT, Falcon или LLAMA-2), мы можем создавать большой спектр мощных приложений благодаря fine-tuning моделей под нужные задачи.
Этапы обучения LLM
На текущем этапе исследований ИИ одним из самых широко применяемых видов fine-tuning моделей LLM стал supervised fine-tuning (SFT). При этой методике курируемый датасет высококачественных выходных данных LLM применяется для непосредственного fine-tuning модели. SFT прост и дёшев в использовании, это полезный инструмент выравнивания языковых моделей, ставший популярным даже за пределами исследовательского сообщества опенсорсных LLM. В этой статье мы вкратце расскажем о принципах SFT, рассмотрим исследования по этой теме и приведём примеры того, как практикующие специалисты могут с лёгкостью пользоваться SFT, написав всего несколько строк кода на Python.
Читать полностью »