Рубрика «Fast.AI»

В статье пойдет речь о классификации тональности текстовых сообщений на русском языке (а по сути любой классификации текстов, используя те же технологии). За основу возьмем данную статью, в которой была рассмотрена классификация тональности на архитектуре CNN с использованием Word2vec модели. В нашем примере будем решать ту же самую задачу разделения твитов на позитивные и негативные на том же самом датасете с использованием модели ULMFit. Результат из статьи, (average F1-score = 0.78142) примем в качестве baseline. Читать полностью »

Наткнулся на статью в блоге компании Школа Данных и решил проверить, на что способна библиотека Fast.ai на том же датасете, который упоминается в статье. Здесь вы не найдете рассуждений о том, своевременно и правильно диагностировать пневмонию, будут ли нужны врачи-рентгенологи, можно ли считать предсказание нейронной сети медицинским диагнозом и т.д. Основная цель — показать, что машинное обучение в современных библиотеках может быть довольно простым (буквально требует немного строчек кода) и дает отличные результаты. Запомним пока результат из статьи (precision = 0.84, recall = 0.96) и посмотрим, что получится у нас.Читать полностью »

Я постараюсь рассказать вам насколько легко получить интересные результаты, просто применив совершенно стандартный подход из тьюториала курса по машинному обучению к не самым используемым в Deep Learning данным. Суть моего поста в том, это может каждый из нас, надо просто посмотреть на тот массив информации, который вы хорошо знаете. Для этого, фактически, гораздо важнее просто хорошо понимать свои данные, чем быть экспертом в новейших структурах нейросетей. То есть, на мой взгляд, мы находимся в той золотой точке развития DL, когда с одной стороны это уже инструмент, которым можно пользоваться без необходимости быть PhD, а с другой — еще полно областей, где его просто особо никто не применял, если посмотреть чуть дальше традиционных тем.

Как создать модель точнее transfermarkt и не предсказывать или что больше всего влияет на стоимость трансферов - 1

Читать полностью »

Если вкратце, задача этого проекта — раскрашивать и восстанавливать старые снимки. Я немного углублюсь в детали, но сначала давайте посмотрим фотографии! Кстати, большинство исходных изображений взято из подреддита r/TheWayWeWere, благодарю всех за такие качественные большие снимки.

Это лишь немногие примеры, и они вполне типичные!

Мария Андерсон в роли Маленькой феи и её паж Любовь Рябцова в балете «Спящая красавица» в Императорском театре, Санкт-Петербург, Россия, 1890 DeOldify: программа для раскрашивания чёрно-белых изображений - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js