В программировании есть много разных способов аутентификации и каждая из них имеет как свои плюсы, так и минусы. В этой статье я хотел бы сделать обзор библиотеки, позволяющей с легкостью добавить аутентификацию лица в ваше .NET приложение.
Рубрика «face»
FaceAuth или как с легкостью встроить FaceID в любое .NET приложение
2023-07-01 в 16:53, admin, рубрики: .net, authentication, face, faceidКомпьютерное зрение и машинное обучение в PHP используя библиотеку opencv
2018-06-17 в 19:32, admin, рубрики: caffe, detection, detector, DNN, face, facemark, facial landmark, lbf, lbph, open source, opencv, php, php-opencv, recognition, recognizer, torch, машинное обучение, обработка изображений, ПрограммированиеВсем привет. Это моя юбилейная статья на хабре. За почти 7 лет я написал 10 статей (включая эту), 8 из них — технические. Общее количество просмотров всех статей — около полумиллиона.
Основной вклад я внёс в два хаба: PHP и Серверное администрирование. Мне нравится работать на стыке этих двух областей, но сфера моих интересов гораздо шире.
Как и многие разработчики я часто пользуюсь результатами чужого труда (статьи на хабре, код на гитхабе, ...), поэтому я всегда рад делиться с сообществом своими результатами в ответ. Написание статей — это не только возврат долга сообществу, но так же позваляет найти единомышленников, получить комментарии от профессионалов в узкой сфере и ещё больше углубить свои знания в исследуемой области.
Собственно эта статья об одном из таких моментов. В ней я опишу чем занимался почти всё своё свободное время за последние полгода. Кроме тех моментов, когда я ходил купаться в море через дорогу, смотрел сериалы или игрался в игры.
Сегментация лица на селфи без нейросетей
2017-09-11 в 11:08, admin, рубрики: classic, cv2, dlib, face, no deep learning, opencv, python, segmentation, selfie, Алгоритмы, Блог компании Open Data Science, машинное обучение, обработка изображений Приветствую вас, коллеги. Оказывается, не все компьютерное зрение сегодня делается с использованием нейронных сетей. Хотя многие стартапы и заявляют, что у них дип лернинг везде, спешу вас разочаровать, они просто хотят хайпануть немножечко. Рассмотрим, например, задачу сегментации. В нашем слаке развернулась целая драма. Одна богатая и высокотехнологичная селфи-компания собрала датасет для сегментации селфи с помощью нейросетей (а это непростое и недешевое занятие). А другая, более бедная и не очень развитая решила, что можно подкупить людей, размечающих фотки, и спполучить базу. В общем, страсти в этих ваших Интернетах еще те. Недавно я наткнулся на статью, где без всяких нейросетей на устройстве делают очень даже хорошую сегментацию. Для сегментации от пользователя требуется дать алгоритму несколько подсказок, но с помощью dlib и opencv такие подсказки легко автоматизируются. В качестве бонуса мы так же сгладим вырезанное лицо и перенесем на какого-нибудь рандомного человека, тем самым поймем, как работают маски во всех этих снапчятах и маскарадах. В общем, классика еще жива, и если вы хотите немного окунуться в классическое компьютерное зрение на питоне, то добро пожаловать под кат.