Рубрика «explain»

Несколько месяцев назад мы анонсировали explain.tensor.ru — публичный сервис для разбора и визуализации планов запросов к PostgreSQL.

За прошедшее время вы уже воспользовались им более 6000 раз, но одна из удобных функций могла остаться незамеченной — это структурные подсказки, которые выглядят примерно так:

Рецепты для хворающих SQL-запросов - 1

Прислушивайтесь к ним, и ваши запросы «станут гладкими и шелковистыми». :)

А если серьезно, то многие ситуации, которые делают запрос медленным и «прожорливым» по ресурсам, типичны и могут быть распознаны по структуре и данным плана.

В этом случае каждому отдельному разработчику не придется искать вариант оптимизации самостоятельно, опираясь исключительно на свой опыт — мы можем ему подсказать, что тут происходит, в чем может быть причина, и как можно подойти к решению. Что мы и сделали.

Рецепты для хворающих SQL-запросов - 2

Давайте чуть подробнее рассмотрим эти кейсы — как они определяются и к каким рекомендациям приводят.
Читать полностью »

Тысячи менеджеров из офисов продаж по всей стране фиксируют в нашей CRM-системе ежедневно десятки тысяч контактов — фактов общения с потенциальными или уже работающими с нами клиентами. А для этого клиента надо сначала найти, и желательно очень быстро. И происходит это чаще всего по названию.

Поэтому неудивительно, что, разбирая в очередной раз «тяжелые» запросы на одной из самых нагруженных баз — нашего собственного корпоративного аккаунта СБИС, я обнаружил «в топе» запрос для «быстрого» поиска по названию для карточек организаций.

Причем дальнейшее расследование выявило интересный пример сначала оптимизации, а затем деградации производительности запроса при последовательной его доработке силами нескольких команд, каждая из которых действовала исключительно из лучших побуждений.

0: чего же хотел пользователь

PostgreSQL Antipatterns: сказ об итеративной доработке поиска по названию, или «Оптимизация туда и обратно» - 1

[КДПВ отсюда]

Что вообще обычно подразумевает пользователь, когда говорит про «быстрый» поиск по названию? Почти никогда это не оказывается «честный» поиск по подстроке типа ... LIKE '%роза%' — ведь тогда в результат попадают не только 'Розалия' и 'Магазин Роза', но и роза' и даже 'Дом Деда Мороза'.

Пользователь же подразумевает на бытовом уровне, что вы ему обеспечите поиск по началу слова в названии и покажете более релевантным то, что начинается на введенное. И сделаете это практически мгновенно — при подстрочном вводе.
Читать полностью »

В докладе представлены некоторые подходы, которые позволяют следить за производительностью SQL-запросов, когда их миллионы в сутки, а контролируемых серверов PostgreSQL — сотни.

Какие технические решения позволяют нам эффективно обрабатывать такой объем информации, и как это облегчает жизнь обычного разработчика.

Кому интересен разбор конкретных проблем и разные техники оптимизаций SQL-запросов и решения типовых DBA-задач в PostgreSQL — можно также ознакомиться с серией статей на эту тему.
Читать полностью »

Периодически возникает задача поиска связанных данных по набору ключей, пока не наберем нужное суммарное количество записей.

Наиболее «жизненный» пример — вывести 20 самых старых задач, числящихся на списке сотрудников (например, в рамках одного подразделения). Для различных управленческих «дашбордов» с краткими выжимками по участкам работы похожая тема требуется достаточно часто.

SQL HowTo: пишем while-цикл прямо в запросе, или «Элементарная трехходовка» - 1

В статье рассмотрим реализацию на PostgreSQL «наивного» варианта решения такой задачи, «поумнее» и совсем сложный алгоритм «цикла» на SQL с условием выхода от найденных данных, который может быть полезен как для общего развития, так и для применения в других похожих случаях.
Читать полностью »

Если писать SQL-запросы без анализа алгоритма, который они должны реализовать, ни к чему хорошему с точки зрения производительности это обычно не приводит.

Такие запросы любят «кушать» процессорное время и активно почитывать данные практически на ровном месте. Причем, это вовсе не обязательно какие-то сложные запросы, наоборот — чем проще он написан, тем больше шансов получить проблемы. А уж если в дело вступает оператор JOIN…

PostgreSQL Antipatterns: редкая запись долетит до середины JOIN - 1

Само по себе соединение таблиц не вредно и не полезно — это просто инструмент, но и пользоваться им надо уметь.
Читать полностью »

VACUUM может «зачистить» из таблицы в PostgreSQL только то, что никто не может увидеть — то есть нет ни одного активного запроса, стартовавшего раньше, чем эти записи были изменены.

А если такой неприятный тип (продолжительная OLAP-нагрузка на OLTP-базе) все же есть? Как почистить активно меняющуюся таблицу в окружении длинных запросов и не наступить на грабли?

Когда пасует VACUUM — чистим таблицу вручную - 1
Читать полностью »

Случаются ситуации, когда в таблицу без первичного ключа или какого-то другого уникального индекса по недосмотру попадают полные клоны уже существующих записей.

Вычищаем клон-записи из таблицы без PK - 1

Например, пишутся в PostgreSQL COPY-потоком значения хронологической метрики, а потом внезапный сбой, и часть полностью идентичных данных приходит повторно.

Как избавить базу от ненужных клонов?
Читать полностью »

Периодически у разработчика возникает необходимость передать в запрос набор параметров или даже целую выборку «на вход». Иногда попадаются очень странные решения этой задачи.

Пойдем «от обратного» и посмотрим, как делать не стоит, почему, и как можно сделать лучше.
Читать полностью »

Бойтесь операций, buffers приносящих…
На примере небольшого запроса рассмотрим некоторые универсальные подходы к оптимизации запросов на PostgreSQL. Пользоваться ими или нет — выбирать вам, но знать о них стоит.
Читать полностью »

Классический вопрос, с которым разработчик приходит к своему DBA или владелец бизнеса — к консультанту по PostgreSQL, почти всегда звучит одинаково: «Почему запросы выполняются на базе так долго?»

Традиционный набор причин:

  • неэффективный алгоритм
    когда вы решили сделать JOIN нескольких CTE по паре десятков тысяч записей
  • неактуальная статистика
    если фактическое распределение данных в таблице уже сильно отличается от собранной ANALYZE'ом в последний раз
  • «затык» по ресурсам
    и уже не хватает выделенных вычислительных мощностей CPU, постоянно прокачиваются гигабайты памяти или диск не успевает за всеми «хотелками» БД
  • блокировки от конкурирующих процессов

И если блокировки достаточно сложны в поимке и анализе, то для всего остального нам достаточно плана запроса, который можно получить с помощью оператора EXPLAIN (лучше, конечно, сразу EXPLAIN (ANALYZE, BUFFERS) ...) или модуля auto_explain.

Но, как сказано в той же документации,

«Понимание плана — это искусство, и чтобы овладеть им, нужен определённый опыт, …»

Но можно обойтись и без него, если воспользоваться подходящим инструментом!
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js