Рубрика «embeddings»

Работая с прикладными задачами для больших языковых моделей (LLM), постепенно понимаешь, что большинство задач сводятся к двум основным целям:

  1. Структурирование неструктурированных данных: преобразование массивов текстов в структурированный формат, по которому можно будет проводить поиск.

  2. Преобразование пользовательских запросов: превращение неструктурированных запросов пользователя в структурированный формат, чтобы можно было искать в подготовленных данных.

Читать полностью »

Julia NLP. Обрабатываем тексты - 1

Анализ и обработка текстов на естественном языке является постоянно актуальной задачей, которая решалась, решается и будет решаться всеми доступными способами. На сегодня хотелось бы поговорить о средствах решения для решения этой задачи, именно, на языке Julia. Безусловно, в виду молодости языка, здесь нет столь развитых средств анализа, как, например Stanford CoreNLP, Apache OpenNLP, GATE и пр., как, например, для языка Java. Однако, даже уже разработанные библиотеки, вполне могут использоваться как для решения типовых задач, так и быть рекомендованными в качестве точки входа для студентов, которым интересна область обработки текстов. А синтаксическая простота Julia и её развитые математические средства, позволяют с лёгкостью погрузиться в задачи кластеризации и классификации текстов.

Читать полностью »

Визуализация больших графов для самых маленьких - 1
Что делать, если вам нужно нарисовать граф, но попавшиеся под руку инструменты рисуют какой-то комок волос или вовсе пожирают всю оперативную память и вешают систему? За последние пару лет работы с большими графами (сотни миллионов вершин и рёбер) я испробовал много инструментов и подходов, и почти не находил достойных обзоров. Поэтому теперь пишу такой обзор сам.
Читать полностью »

Word2vec в картинках - 1

«Во всякой вещи скрыт узор, который есть часть Вселенной. В нём есть симметрия, элегантность и красота — качества, которые прежде всего схватывает всякий истинный художник, запечатлевающий мир. Этот узор можно уловить в смене сезонов, в том, как струится по склону песок, в перепутанных ветвях креозотового кустарника, в узоре его листа.

Мы пытаемся скопировать этот узор в нашей жизни и нашем обществе и потому любим ритм, песню, танец, различные радующие и утешающие нас формы. Однако можно разглядеть и опасность, таящуюся в поиске абсолютного совершенства, ибо очевидно, что совершенный узор — неизменен. И, приближаясь к совершенству, всё сущее идёт к смерти» — Дюна (1965)

Я считаю, что концепция вложений (embeddings) — одна из самых замечательных идей в машинном обучении. Если вы когда-нибудь использовали Siri, Google Assistant, Alexa, Google Translate или даже клавиатуру смартфона с предсказанием следующего слова, то уже работали с моделью обработки естественного языка на основе вложений. За последние десятилетия произошло значительное развитие этой концепции для нейронных моделей (последние разработки включают контекстуализированные вложения слов в передовых моделях, таких как BERT и GPT2).
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js