Рубрика «энтропийный коэффициент»

Снижение объёма выборки экспериментальных данных без потери информации - 1

В чем проблема гистограмм экспериментальных данных

Основой управления качеством продукции любого промышленного предприятия является сбор экспериментальных данных с последующей их обработкой.

Первичная обработка результатов эксперимента включает сопоставление гипотез о законе распределения данных, описывающем с наименьшей погрешностью случайную величину по наблюдаемой выборке.

Для этого выборка представляется в виде гистограммы, состоящей из $k$ столбцов, построенных на интервалах протяженностью $d$.

Идентификации формы распределения результатов измерений требует также ряд задач, эффективность решения которых отличается для различных распределений (например, использование метода наименьших квадратов или вычисление оценок энтропии).

Кроме того, идентификация распределения нужна ещё и потому, что рассеяние всех оценок (среднеквадратичного отклонения, эксцесса, контрэксцесса и др.) также зависит от формы закона распределения.

От объема выборки зависит успешность идентификации формы распределения экспериментальных данных и, если он мал, особенности распределения оказываются замаскированными случайностью самой выборки. На практике обеспечить большой объем выборки, например больше 1000, не представляется возможным в силу разных причин.

В такой ситуации важно наилучшим образом распределить выборочные данные по интервалам, когда для дальнейшего анализа и расчетов интервальный ряд необходим.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js