Рубрика «эллиптические кривые» - 2

image
На этой табличке родом из Вавилона, сделанной около 1800 года до н.э., перечислены пифагоровы тройки – целые числа a, b и c, удовлетворяющие полиномиальному уравнению a2 + b2 = c2. По сию пору поиск рациональных и целочисленных решений полиномиальных уравнений остаётся серьёзной задачей для математиков

В пятом столетии до н.э. греческий математик сделал открытие, пошатнувшее основы математики, и, по легенде, стоившее ему жизни. Историки считают, что это был Гиппас из Метапонта, и он принадлежал к пифагорейской школе математики, основным догматом которой было то, что любое физическое явление можно выразить целыми числами и их отношениями (тем, что мы называем рациональными числами). Но это предположение развалилось, когда, как считают историки, Гиппас рассматривал длины сторон прямоугольного треугольника, которые должны удовлетворять теореме Пифагора – знаменитому соотношению a2 + b2 = c2. Говорят, что Гиппас показал, что при одинаковой длине катетов треугольника, выражаемой рациональным числом, его гипотенузу нельзя выразить рациональным числом.
Читать полностью »

Проблема факторизации напрямую связана с определением криптостойкости RSA, которое базируется на предположении, что не существует быстрых алгоритмов факторизации, которые за короткое время позволили бы взломать код, а если через некоторое время и получится это сделать, то данные потеряют свою актуальность. В этой статье мы протестируем и сделаем выводы по одному из способов факторизации.
Читать полностью »

image
Привет!
Я уже писал на Хабре о своей реализации блочных шифров стран СНГ. Выдалась еще одна свободная неделька в результате чего к симметричным стандартам добавились алгоритмы электронной цифровой подписи: российский ГОСТ 34.10-2012, украинский ДСТУ 4145-2002 и белорусский СТБ 34.101.45-2013.
Все три алгоритма основаны на эллиптических кривых. Но реализация каждого из стандартов имеет свои тонкости, о которых я хочу кратко рассказать в этой статье.
Читать полностью »

Эта примечательная гипотеза связывает поведение функции L там, где в настоящее время неизвестно, определена ли она, и порядок группы Ш, про которую неизвестно, конечна ли она!
J.T.Tate, The arithmetic of elliptic curves, Inventiones mathematicae 23 (1974)

Оригинал

This remarkable conjecture relates the behaviour of a function L at a point where it is not at present known to be defined to the order of a group Ш which is not known to be finite!

(Краткая справка насчёт актуальности цитаты 40-летней давности: после Уайлса и Ко таки стало известно, что функцию L можно определить на всей комплексной плоскости. Конечность группы Ш в общем случае остаётся неизвестной.)

Остаётся обсудить возможность ошибки. В качестве предосторожности против внутренних ошибок компьютера можно прогнать все вычисления дважды или делать проверки внутри программы. Более того, компьютеры — в отличие от людей — устроены так, что их ошибки обычно чересчур велики, чтобы их не заметить. Мы уверены, что в наших результатах нет подобных ошибок. С другой стороны, при кодировании замысловатой схемы вычислений в компьютерную программу неизбежны программистские ошибки. Большинство из них обнаруживаются ещё до основных запусков, из-за того, что программа виснет или выдаёт нелепые результаты. Но программа, которую считается работающей, всё ещё может содержать логические ошибки, проявляющиеся при редких стечениях обстоятельств: и действительно, большинство компьютеров подвержено аномалиям, из-за которых те иногда ведут себя не так, как должны по спецификациям. В сущности, наша программа для этапа (ii) оказалась неточной и пропустила очень небольшое количество эквивалентностей, которые должна была найти.

По этим причинам мы считаем, что не стоит автоматически доверять результатам, полученным на компьютере. В некоторых случаях их можно проверить за счёт свойств, которые по существу не были задействованы в вычислениях и которые вряд ли пережили бы возможную ошибку. (Например, таблицу значений гладкой функции, полученную без использования интерполяции, можно проверить вычислением разностей соседних значений.) Но если подобные проверки недоступны, не стоит полностью доверять результатам, пока они не были независимо подтверждены другим программистом на другом компьютере. Мы не думаем, что это задаёт чрезмерный стандарт во время, когда компьютеры становятся столь широко доступны; и мы уверены, что низкие стандарты уже привели к публикации и вере в неверные результаты.

B.J.Birch and H.P.F.Swinnerton-Dyer, Notes on elliptic curves. I, Journal für die reine und angewandte Mathematik 212 (1963)

Оригинал

It remains to discuss the question of error. One can take precautions against machine errors either by running all the calculations twice or by checks included in the program. Moreover, machines — unlike human beings — are so designed that the errors they make are usually too gross to be overlooked. We are satisfied that there are in our results no undetected errors of this sort. On the other hand, in translating an elaborate scheme of calculation into a machine program one is bound to make mistakes. Most of these are found before the program is used for production runs; they show up because the program grinds to a halt or produces ridiculous results. But a program which is believed to work may still contain logical errors which only have an effect in rare circumstances: and indeed most computers have anomalies which cause them occasionally not to behave in the way that their specifications suggest. In fact, our program for stage (ii) was imperfect in that a very few equivalences were missed by the machine.

For these reasons we believe that results obtained from a computer should not be automatically trusted. In some cases they can be checked because they have properties which were not essentially used in the course of the calculation and which would be unlikely to survive if an error had been made. (For example, if a table of a smooth function has been calculated without the use of interpolation, it can be checked by differencing.) But if checks of this sort are not available, results should not be fully trusted until they have been independently reproduced by a different programmer using a different machine. We do not think this sets an unreasonable standard, now that computers are becoming so widely available; and we are satisfied that lower standards have already led to a number of untrue results being published and believed.

Гипотеза Бёрча — Свиннертон-Дайера - 1
Под катом не будет формулировки гипотезы; знающие выражения вроде «Euler product» и «holomorphic continuation» (и в смысле языка, и в смысле обозначаемых понятий) могут прочитать пятистраничный pdf с сайта института Клэя. Под катом — некоторая попытка пояснить, на каком направлении развития математической мысли вообще находится гипотеза Бёрча — Свиннертон-Дайера. А также — как можно досчитать до больших чисел вроде тех, что показаны на КДПВ, менее чем за секунду.
Читать полностью »

image
Привет, %username%!

Пару недель назад я опубликовал пост Эллиптическая криптография: теория, в котором постарался описать основные аспекты использования эллиптических кривых в криптографии. Тот мой пост носил исключительно ознакомительный характер, и не предусматривал никакой иной работы с компилятором, кроме созерцательной. Но что за теория без практики? С целью исправить это упущение я, собравшись с духом, ринулся в бой с ГОСТ-ом 34.10-2012, схемой ЭЦП на эллиптических кривых. Если вам интересно посмотреть что из всего этого получилось, тогда добро пожаловать под кат. Читать полностью »

Пусть p — нечётное простое число. Довольно широко известно, что p представимо в виде суммы двух квадратов целых чисел p=a2+b2 тогда и только тогда, когда p при делении на 4 даёт остаток 1: 5=12+22, 13=32+22, 17=12+42, ...; 3, 7, 11,… непредставимы. Куда менее известно, что a и b можно записать красивой формулой, имеющей непосредственное отношение к одной эллиптической кривой. Об этом результате 1907 года за авторством немца по фамилии Jacobsthal и о связанных вещах мы сегодня и поговорим.

Совсем легко понять, почему 3, 7, 11 и прочие числа, дающие при делении на 4 остаток 3, непредставимы в виде a2+b2: квадрат чётного числа всегда делится на 4, квадрат нечётного числа всегда даёт остаток 1 при делении на 4, сумма двух квадратов при делении на 4 может давать остатки 0, 1 или 2, но никак не 3. Представимость простых чисел вида 4k+1 неочевидна (особенно если заметить, что простота существенна: число 21 хотя и имеет нужный остаток, но суммой двух квадратов не представляется).

Читать полностью »

Эллиптическая криптография: теория
Привет, %username%!
Недавно на хабре была опубликована очень спорная статья под названием «Эксперты призывают готовиться к криптоапокалипсису». Честно говоря, я не согласен с выводами авторов о том, что «голактеко опасносте», все скоро взломают и подорожает гречка. Однако я хочу поговорить не об этом.
В комментариях к той статье я высказал мнение, что кое в чем докладчики правы и переходить на эллиптическую криптографию уже давно пора. Ну в самом деле, кто-нибудь видел в интернете ECDSA сертификат? Хотя стандарту уже без малого 13 лет, мы продолжаем по старинке использовать старый добрый RSA. В общем сказал я это, и как это часто бывает, задумался а так ли необходим переход на «эллиптику»? Да и что это за зверь такой эллиптическая криптография? Какие имеет плюсы, минусы, тонкости. Одним словом, давайте разбираться. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js