Рубрика «электроны» - 2

Квантовый процессор на базе спинового резонанса и манипуляций с синглетной-триплетной системой - 1

Ох уж эти квантовые технологии. Они заполонили умы ученых по всему миру, как Pokemon GO в свое время заполонил умы пользователей смартфонов. Сравнение конечно не самое хорошее, ибо первые принесут пользу, второе — принесло толпы людей в парках, но далеко не ради свежего воздуха или пикника. Сегодня мы будем разбираться в исследовании, нацеленом на создании масштабируемого квантового процессора, умеющего находить и исправлять ошибки. Для работы такого процессора требуется контроль над множеством кубитов (квантовых битов) параллельно, пока протекает процесс обнаружения ошибок среди выбранных кубитов. То есть жонглируем одной рукой, а второй показываем карточные фокусы. Задача, мягко говоря, не из легких. Давайте же узнаем как ученые из Австралии смогли реализовать такой сложный замысел на практике. Поехали.Читать полностью »

Au-Ni-MgO: теплообмен на нанометровом уровне - 1

Ученые современности, как и сто или триста лет назад, находятся в постоянном поиске чего-то нового. Каждый раз, когда открывается новое свойство какого-либо вещества, явления или процесса, великие умы ищут этому практическое применение. Сегодняшнее исследование не исключение. С каждым днем объем данных в мире неустанно растет. Потому разработка новых способов хранить информацию находится сейчас на волне популярности, как и квантовые компьютеры, устройства на базе микроорганизмов и т.д. В качестве основы возможных носителей будущего могут быть самые разные вещи, от скирмионов до фотонов. Сегодня мы рассмотрим исследование столь знакомого нам физического процесса как теплообмен, но под новым углом. Ультрабыстрый теплообмен в нанометровых многослойных металлических структурах может послужить основой новой технологии, говорят ученые. Почему именно этот процесс вызвал у них столь большой интерес, и действительно ли их громогласное утверждение можно считать пророческим? Понять это нам поможет доклад ученых, в котором мы сейчас и покопаемся. Поехали.Читать полностью »

Спиновое состояние «твердое тело» в искусственной сотовой решетке - 1

В определенных научных кругах ведется дискуссия касательно магнитной корреляции при низких температурах в двумерной искусственной магнитной сотовой решетке. Теоретики утверждают, что подобная система способна демонстрировать формирование твердотельного состояния с нулевой спиновой энтропией*. Однако на практике подобных свойств пока не было обнаружено. Данное исследование делает уверенный шаг к пониманию вышеуказанных явлений. Что именно удалось узнать исследователям, мы поймем благодаря их отчету. Поехали.Читать полностью »

Начну с двух простых вопросов с достаточно интуитивными ответами. Возьмём чашу и шарик (рис. 1). Если мне нужно, чтобы:
• шарик оставался неподвижным после того, как я помещу его в чашу, и
• он оставался примерно в том же положении при перемещении чаши,

то куда мне его положить?

Процесс квантового туннелирования - 1
Рис. 1

Конечно, мне нужно положить его в центр, на самое дно. Почему? Интуитивно ясно, что если я положу его куда-то ещё, он скатится до дна, и будет болтаться туда и сюда. В итоге трение уменьшит высоту болтаний и затормозит его внизу.

В принципе можно попробовать уравновесить шарик на краю чаши. Но если я немного потрясу её, шарик потеряет равновесие у падёт. Так что это место не удовлетворяет второму критерию в моём вопросе.
Читать полностью »

Ядра атомов: в самом сердце материи - 1
Рис. 1

Ядро атома получается крохотным, его радиус в 10 000–100 000 раз меньше всего атома. Каждое ядро содержит определённое количество протонов (обозначим его Z) и определённое количество нейтронов (обозначим его N), скреплённых вместе в виде шарика, по размеру не сильно превышающего сумму их размеров. Отметим, что протоны и нейтроны вместе часто называют «нуклонами», а Z+N часто называют A – общее количество нуклонов в ядре. Также Z, «атомное число» – количество электронов в атоме.

Типичное мультяшное изображение атома (рис. 1) чрезвычайно преувеличивает размер ядра, но более-менее правильно представляет ядро как небрежно соединённое скопление протонов и нейтронов.

Содержимое ядра

Откуда нам известно, что находится в ядре? Эти крохотные объекты просто охарактеризовать (и это было просто исторически) благодаря трём фактам природы.
Читать полностью »

Электроны, крохотные объекты, населяющие задворки атомов, играют ведущую роль в химии, переносят электрический ток по нашим электрическим сетям и внутри ударов молний, и составляют «катодные лучи», использовавшиеся для создания изображений в телевидении XX века и на экранах компьютеров. Это наиболее типичный пример (вроде бы) элементарных частиц.

Под «элементарными» я подразумеваю, что электроны неделимы и не состоят из частиц меньшего размера. При помощи «вроде бы» я напоминаю, что они элементарны, насколько нам позволяют судить об этом современные знания – то, что мы знаем об электронах, получено в экспериментах, а наши эксперименты не обладают бесконечной властью. Если электроны не элементарны, но настолько малы, что наши текущие эксперименты не могут их разломать – они будут выглядеть элементарными во всех экспериментах, проведённых нами в прошлом и настоящем, но не во всех будущих экспериментах. Так что, когда-нибудь – ведь 80 лет назад люди считали, что протоны могут быть элементарными, но им не хватало знаний, а 150 лет назад люди считали, что атомы могут быть элементарными, но им не хватало знаний – мы можем обнаружить, что электроны не элементарны. По пока, поскольку все доступные нам эксперименты демонстрируют, что они элементарны, мы будем условно предполагать, что так и есть – помня, что это частично экспериментальный факт, и частично – предположение!
Читать полностью »

В моей статье про энергию и массу и связанные с ними понятия основное внимание я уделил частицам – возмущениям полей – и уравнениям, при помощи которых Эйнштейн связывал их энергию, импульс и массу. Но энергия возникает и в других местах, не только благодаря частицам. Чтобы по-настоящему понять Вселенную и то, как она работает, необходимо понять, что энергия может появиться из-за взаимодействия различных полей, или даже из-за взаимодействия с самим полем. Вся структура нашего мира – протоны, атомы, молекулы, тела, горы, планеты, звёзды, галактики – является результатом наличия такого типа энергии. На самом деле, многие типы энергии, о которых мы рассуждаем так, будто они отличаются друг от друга – химическая энергия, ядерная энергия, электромагнитная энергия – либо являются одной из форм энергии взаимодействия либо каким-то образом к ней относятся.

Когда ученикам начинают преподавать физику, в этот тип энергии включается то, что учителя называют «потенциальной энергией». Но поскольку слово «потенциальная» в английском [и русском] языках означает не то же самое, что в физике, и поскольку то, каким образом преподносят эту концепцию, сильно отличается от современной физической точки зрения, я предпочитаю использовать для этой энергии другое название – чтобы она не связывалась с имеющимися у читателя представлениями, правильными или неправильными.
Читать полностью »

Автор этого доклада уже 12 лет является сотрудником Большого адронного коллайдера (БАК), а в прошлом году начал параллельно работать в Яндексе. В своей лекции Фёдор рассказывает об общих принципах работы БАК, целях исследований, объёмах данных и о том, как эти данные обрабатываются.

Под катом — расшифровка и основная часть слайдов.

Читать полностью »

Почему большинство частиц дезинтегрируют (а технически говоря, распадаются) на другие?

Физика частиц нашла уже целую гору вроде бы элементарных частиц, и их может быть ещё больше. Но большинство из этих частиц не лежат спокойно на полу в ожидании, пока мы их подметём. Нам нужно было построить особые аппараты, такие, как Большой адронный коллайдер, чтобы произвести их, открыть и изучить. Почему? Потому, что большинство из них – за исключением тех, из которых состоим мы сами, и парочки других – разваливаются (распадаются) на другие частицы за малую долю секунды. На самом деле малую – по сравнению с ней миллионная доля секунды кажется вечностью. Некоторые из них выживают в течение всего триллионной от триллионной доли секунды, или даже меньше!

В данной статье при помощи неплохих, хотя и несовершенных, аналогий, я собираюсь дать вам пару объяснений по поводу того, почему распад – неизбежная судьба большинства элементарных частиц.

Вы можете вспомнить, что волны в квантовом мире состоят из частиц; звуковые волны из фононов, световые из фотонов, и т.п. Или можете просто принять это как данность и продолжить чтение.
Читать полностью »

Что удерживает электрон в атоме на орбите атомного ядра?

На первый взгляд, особенно если смотреть на мультяшную версию атома, описанную мною ранее со всеми её недостатками, электроны, двигающиеся по орбите вокруг ядра, выглядят так же, как планеты, двигающиеся по орбите вокруг Солнца. И вроде бы принцип этих процессов одинаков. Но есть подвох.

image

Рис 1

Что удерживает планеты на орбите вокруг Солнца? В Ньютоновской гравитации (Эйнштейновская сложнее, но тут она нам не нужна) любая пара объектов притягивается друг к другу посредством гравитационного взаимодействия, пропорционального произведению их масс. В частности, гравитация Солнца притягивает к нему планеты (с силой, обратно пропорциональной квадрату расстояния между ними. То есть, если расстояние уменьшается вдвое, сила увеличивается вчетверо). Планеты тоже притягивают Солнце, но оно настолько тяжёлое, что это почти не влияет на его движение.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js