Рубрика «dwh» - 2

Публикуется от имени IvanovAleksey.

Тестирование хранилищ данных - 1

В интернете мало информации по тестированию Data Warehouse.
Можно найти общие требования: полнота данных, качество и т.п.
Но нигде нет описания организации процесса, и какими проверками можно покрыть эти требования.
В этой статье постараюсь рассказать: как мы тестируем Хранилище данных в "Тинькофф Банк".

Читать полностью »

В этой статье я хочу рассказать про важную задачу, о которой нужно думать и нужно уметь решать, если в аналитической платформе для работы с данными появляется такой важный компонент как Hadoop — задача интеграции данных Hadoop и данных корпоративного DWH. В Data Lake в Тинькофф Банке мы научились эффективно решать эту задачу и дальше в статье я расскажу, как мы это сделали.

Data Lake – от теории к практике. Методы интеграции данных Hadoop и корпоративного DWH - 1

Данная статья является продолжением цикла статей про Data Lake в Тинькофф Банке (предыдущая статья Data Lake – от теории к практике. Сказ про то, как мы строим ETL на Hadoop).

Читать полностью »

Проекты хранилищ данных уже давно являются частью IT-инфраструктуры большинства крупных предприятий. Процессы ETL являются частью этих проектов, однако разработчики иногда совершают одни и те же ошибки при проектировании и сопровождении этих процессов. Некоторые из этих ошибок описаны в этом посте.
Читать полностью »

В этой статье я хочу рассказать про ещё один этап развития DWH в Тинькофф Банке.

Ни для кого не секрет, что требования к наличию Disaster Recovery (далее DR) в современных бизнес информационных системах относятся к категории «must have». Так, чуть более года назад, команде, занимающейся развитием DWH в банке, была поставлена задача реализовать DR для DWH, на котором построены как offline, так и online процессы банка.

Проект Dual ETL или как мы строили Disaster Recovery для Greenplum - 1

Читать полностью »

Эта статья нацелена на Большие и Очень большие Хранилища Данных, но для ровной картины в классификации немного упомянуты и маленькие.

Статья написана для специалистов, которые ценят главный критерий работы с базами данными — скорость. Речь пойдет о системах, нацеленных на грубый full scan (ораклисты уже напряглись, а терадатовцы радуются).

Давайте рассмотрим, под какой объем данных и работ лучше всего подходит Oracle или Hadoop/NoSQL.
Читать полностью »

О чем статья

Незаметно пролетел год, как начались работы по разработке и внедрению хранилища данных на платформе Вертика.
На хабре уже есть статьи про саму СУБД Вертика, особенно рекомендую эту: HP Vertica, первый запущенный проект в РФ, ведь ее автор очень помог нам на начальном этапе. Алексей, спасибо еще раз.
Хотелось бы рассказать о том, какая методология применялась для проектирования физической структуры хранилища, чтобы наиболее полно использовать возможности HP Vertica.
Эту статью хотел бы посветить обоснованию оптимальности выбранной методологии, а в следующей — рассказать о том, какие техники позволяют анализировать данные, содержащие десятки млрд. строк, не быстро, а очень быстро.

Постановка задачи

Рассмотрим высоконагруженный сайт крупной российской интернет-компании (входит в топ 10 сайтов рунета по количеству уникальных пользователей по данным LiveInternet и Google Analytics).
Деятельность компании описывается следующими цифрами: ~ 10 млн. активных пользователей, ~100 млн. просмотров страниц в день, около 1 тыс. новых объектов, размещенных пользователями на сайте в течение 1 минуты, ~10 тыс. поисковых запросов пользователей в минуту.
Грубая оценка количества действий, подлежащих сохранению в хранилище, составляет 100 млн. новых записей в сутки (~100 GB новых данных в сутки).
Т.е. при построении классического хранилища данных с отказом от стирания поступивших ранее данных, объем хранилища через 3 месяца эксплуатации составит 10TB сырых данных. Big Data как она есть.
Нужно построить хранилище, которое хранило бы не меньше 6 месяцев данных, позволяло их анализировать, визуализировать, и отставало бы от реальной жизни настолько мало, насколько это возможно (в худшем случае — отставало бы на день, в лучшем — на минуты).
Вынося сразу за скобки вопрос выбора платформы — хранилище должно работать на HP Vertica, MPP базе колоночного хранения, см. вводную статью в заголовке.
Читать полностью »

Data replication. Attunity Replicate and Greenplum

В данной статье мне хотелось бы продолжить описание технологий, используемых в Банке ТКС при построении DWH. Статья может быть интересна тем, кто планирует использовать LogMining Change Data Capture (CDC) для репликации данных из операционных источников в онлайн-стэйджинг Хранилища, построенного на основе СУБД GreenPlum.

Читать полностью »

Мы работаем над DWH в телекоммуникациях, поэтому пример, который я рассматриваю, называется «Абонент». Принцип универсален и это мог быть «Клиент» или «Пациент» — в зависимости от отрасли. Я надеюсь методику найдут полезной разработчики DWH из разных отраслей.

Если Вы не понимаете, что такое DWH, измерения и факты, я рекомендую прочитать книгу Ральфа Кимбалла «Dimensional Modeling». Речь идёт о базе данных для аналитики и консолидированной отчетности предприятия, конкретно о формировании и актуализации измерений — таблиц, которые хранят атрибуты (поля) для отбора (WHERE) в будущих запросах. Читать полностью »

В прошлый раз (http://habrahabr.ru/company/odnoklassniki/blog/149391/) мы говорили о системе графиков и дешбордов, которые используем для мониторинга сайта и активности пользователей. Нам приходится логировать более двух триллионов (2 000 000 000 000) событий в день. В этом посте мы расскажем, как мы собираем эти данные, обрабатываем и загружаем в хранилище. Читать полностью »

Интерес к технологиям Big Data постоянно растет, а сам термин приобретает все большую популярность, многие люди хотят поговорить об этом, обсудить перспективы и возможности в этой области. Однако немногие конкретизируют — какие компании представлены на этом рынке, не описывают решения этих компаний, а также не рассказывают про методы, лежащие в основе решений Big Data. Область информационных технологий, относящихся к хранению и обработке данных, претерпела существенные изменения к настоящему моменту и представляет собой стремительно растущий рынок, а значит лакомый кусок для многих всемирно известных и небольших, только начинающих, компаний в этой сфере. У типичной крупной компании имеется несколько десятков оперативных баз данных, хранящих данные об оперативной деятельности компании (о сделках, запасах, остатках и т.п.), которые необходимы аналитикам для бизнес-анализа. Так как сложные, непредвиденные запросы могут привести к непредсказуемой нагрузке на оперативные базы данных, то запросы аналитиков к таким базам данных стараются ограничить. Кроме того, аналитикам необходимы исторические данные, а также данные из нескольких источников. Для того чтобы обеспечить аналитикам доступ к данным, компании создают и поддерживают так называемые хранилища данных, представляющие собой информационные корпоративные базы данных, предназначенные для подготовки отчетов, анализа бизнес-процессов и поддержки системы принятия решений. Хранилища данных служат также источником для оценки эффективности маркетинговых кампаний, прогнозированию, поиску новых возможных рынков и аудиторий для продажи, всевозможному анализу предыдущих периодов деятельности компаний. Как правило, хранилище данных – это предметно-ориентированная БД, строящаяся на временной основе, т.е. все изменения данных отслеживаются и регистрируются по времени, что позволяет проследить динамику событий. Также хранилища данных хранят долговременные данные — это означает, что они никогда не удаляются и не переписываются – вносятся только новые данные, это необходимо для изучения динамики изменения данных во времени. И последнее, хранилища данных, в большинстве случае, консолидированы с несколькими источниками, т.е. данные попадают в хранилище данных из нескольких источников, причем, прежде чем попасть в хранилище данных, эти данные проходят проверку на непротиворечивость и достоверность.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js