Рубрика «DuckDB»

Почему СУБД такие медленные - 1

Недавно на Хабре публиковался перевод статьи «Просто выберите Postgres» (оригинал, англ. яз) с аргументами, что Postgres — оптимальная БД для десктопных и мобильных приложений. Аналогичное мнение высказывают в других популярных статьях вроде «До свидания MongoDB, здравствуй PostgreSQL». Главным недостатком SQLite называют то, что данные хранятся в одном файле, а MongoDB (а также DynamoDB и Cassandra) — низкую производительность:

«Всё это связано с тем, что подобные базы данных, по сути, представляют собой огромную распределённую хеш-таблицу. Единственные операции, работающие без необходимости сканирования всей базы данных — это поиск по секционному ключу и сканы, при которых используется ключ сортировки.

…Если паттерны доступа существенно изменятся, то может потребоваться полная повторная обработка всех данных».

Более производительные резидентные БД хранят данные в памяти (Redis, Valkey), но их использование ограничено объёмом ОЗУ.

После такого заявления интересно посмотреть на независимые тесты производительности разных СУБД.Читать полностью »

image

1. Вступление

У меня в портфолио есть несколько готовых пет-проектов на Rust, и я заметил, что позиция «а у нас уже получилась DataFrame?» нисколько меня не устраивает. Поэтому я подумал, не сделать ли мне элементарный контейнер, который решал бы мою конкретную задачу. Но этот проект вышел из-под контроля.

Год спустя, написав немало кода, я создал одну из самых быстрых библиотек датафреймов, применимую в Rust и Python. Вот мой первый официальный «Hello World» на polars, размещённый у меня в блоге. Надеюсь, что с помощью этого поста я смогу пояснить читателю некоторые решения, которые мне довелось принять при проектировании, и вам станет понятнее, как Polars работает под капотом.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js