Рубрика «DS»

Всем привет! Меня зовут Анастасия Рысьмятова, я руковожу юнитом LLM в Авито.
В этой статье я расскажу, как мы с командой создали и адаптировали нашу большую языковую модель A-vibe: зачем решили развивать собственную LLM, как построили токенизатор, собрали датасеты, провели SFT и RL и что получили в итоге. Поделюсь основными экспериментами и покажу наши результаты.

Сегодня мы выпустили в опенсорс свое семейство генеративных моделей – A-Vibe и A-Vision, статья приурочена к этому событию.

Читать полностью »

Знание классики - база любых собеседований на все грейды в DS!

Этот материал не рассчитан на изучение тем с нуля. Это чеклист и тренажёр, по которому стоит пройтись перед техническим интервью по классическому ML. Кратко, по делу, с акцентом на то, что действительно спрашивают.

Это вторая часть вопросов по classic ML, если вы не видели первую, то обязательно читайте (там разобрал основы мл, линейные модели, метрики классификации и регресии).

А в этой части разберем:

  • деревья

  • ансамбли

  • метрические модели

  • кластеризацию

Читать полностью »

StyleGAN-NADA (No Annotation Domain Adaptation) - метод, разработанный специалистами из Tel Aviv University и NVIDIA Research, позволяющий адаптировать генеративную модель (StyleGAN2) к новому домену без единого изображения, использующий только семантическую силу больших моделей, предварительно обученных контрастивным методом на тексте и изображениях (СLIP). На рисунке 1 представлены возможности метода StyleGAN-NADA.

Читать полностью »

В статье представлено многоязычное расширение SWE-Bench от команды Doubletapp — бенчмарка для оценки больших языковых моделей (LLM) на реальных задачах программной инженерии, на различных языках программирования и кодовых базах индустрии. О процессе сбора SWE-Bench мы уже рассказывали в отдельной статьеЧитать полностью »

Привет! Я Сергей, в Битрикс24 отвечаю за то, чтобы под капотом Copilot крутилась правильная LLM — та, что действительно помогает пользователю, а не просто разбрасывается смайликами.

Выбирая лучшие языковые модели, люди далеко не всегда руководствуются точностью ответов. Иногда внимание пользователей привлекает красивое оформление или эмоциональный стиль, а не фактическая польза. На LM Arena это стало особенно заметно в последнее время и заставило команду платформы изучить, как именно эмоции и оформление влияют на рейтинг моделей. Команда площадки решила отделить форму от содержания и запустила фильтрЧитать полностью »

API для искусственного интеллекта предоставляют разработчикам доступ к мощным предобученным моделям и при этом не требуют глубоких знаний в области машинного обучения. В статье представлен обзор самых популярных API для работы с искусственным интеллектом. Давайте рассмотрим, как эффективно использовать их в своих проектах.

В статье рассмотрим:

OpenAI API · · Anthropic · · Google Vertex AI · · AWS Bedrock · · Groq · · Cerebras

Зачем использовать API для ИИ?

Введение

Недавно я и моя команда участвовали в хакатоне от компании «Норникель». Мы выбрали трек «Грязные дела», где наша задача заключалась в разработке алгоритма компьютерного зрения для решения проблем на производстве.

Вот условия задачи

Задача заключалась в решении проблемы загрязнения линз камер на производстве. Из-за этого алгоритмы компьютерного зрения теряли свою точность, что сказывалось на производительности. Нужно было разработать эффективный алгоритм для сегментации дефектов с минимальными затратами ресурсов и времени.

Читать полностью »

image

31 августа 2019г. Mail.ru Group и сообщество Open Data Science приглашают на Moscow Data Science Major. Это как Data Fest, только мини. Событие состоит из 8 тематических блоков докладов, 1 ML-тренировки и 8 часов ударной порции нетворкинга и знакомств. Знакомьтесь с программой и регистрируйтесь! Вход на событие бесплатный, по одобренной регистрации. Регистрация закрывается в 29 августа в 12:00.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js