Рубрика «дорожные знаки»

image

2ГИС гордится точностью данных. Каждый рабочий день в каждом городе наши специалисты обходят целые районы, чтобы зафиксировать на карте все изменения — новые дома, дороги и даже тропинки. А ещё они собирают и наносят на неё дорожные знаки, помогая правильно строить автомобильные и пешие маршруты. В этой статье я расскажу, как мы решили помочь картографам и начали собирать дорожные знаки автоматически.
Читать полностью »

Привет! Продолжаем серию материалов от выпускника нашей программы Deep Learning, Кирилла Данилюка, об использовании сверточных нейронных сетей для распознавания образов — CNN (Convolutional Neural Networks).

В прошлом посте мы начали разговор о подготовке данных для обучения сверточной сети. Сейчас же настало время использовать полученные данные и попробовать построить на них нейросетевой классификатор дорожных знаков. Именно этим мы и займемся в этой статье, добавив дополнительно к сети-классификатору любопытный модуль — STN. Датасет мы используем тот же, что и раньше.

Spatial Transformer Network (STN) — один из примеров дифференцируемых LEGO-модулей, на основе которых можно строить и улучшать свою нейросеть. STN, применяя обучаемое аффинное преобразование с последующей интерполяцией, лишает изображения пространственной инвариантности. Грубо говоря, задача STN состоит в том, чтобы так повернуть или уменьшить-увеличить исходное изображение, чтобы основная сеть-классификатор смогла проще определить нужный объект. Блок STN может быть помещен в сверточную нейронную сеть (CNN), работая в ней по большей части самостоятельно, обучаясь на градиентах, приходящих от основной сети.

Весь исходный код проекта доступен на GitHub по ссылке. Оригинал этой статьи можно посмотреть на Medium.

Чтобы иметь базовое представление о работе STN, взгляните на 2 примера ниже:

Распознавание дорожных знаков с помощью CNN: Spatial Transformer Networks - 1

Слева: исходное изображение. Справа: то же изображение, преобразованное STN. Spatial transformers распознают наиболее важную часть изображения и затем масштабируют или вращают его, чтобы сфокусироваться на этой части.
Читать полностью »

Атака на модели машинного обучения сбивает робоавтомобили - 1
Набор экспериментальных изображений с художественными стикерами на разных расстояниях и под разными углами: (а) 5 футов, 0 градусов; (b) 5' 15°; (с) 10' 0°; (d) 10' 30°; (e) 40' 0°. Обман работает на любом расстоянии и под любым углом: вместо знака «Стоп» система машинного обучения видит знак «Ограничение скорости 45 миль»

В то время как одни учёные совершенствуют системы машинного обучения, другие учёные совершенствуют методы обмана этих систем.

Как известно, небольшие целенаправленные изменения в картинке способны «сломать» систему машинного обучения, так что она распознает совершенно другое изображение. Такие «троянские» картинки называются «состязательными примерами» (adversarial examples) и представляют собой одно из известных ограничений глубинного обучения.
Читать полностью »

image
Фото The Register

Власти австралийского Сиднея профинансировали программу установки парковочных знаков, информационное табло которых выполнено по технологии электронных чернил. Основная причина такого решения: практичность и удобство обслуживания таких знаков для городских служб, занимающихся управлением дорожным трафиком в городе. В Сиднее нередки спортивные соревнования на местном стадионе, а во время их проведения пробки на дорогах становятся серьёзной головной болью.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js