Рубрика «дискретное логарифмирование»

Вступление

В качестве КДПВ представлен математик Эварист Галуа, имя которого увековечено в обозначении конечных полей: GF (Galois field).

Вспомним что Галуа имел отношение, не только к конечным полям, но и к таким фундаментальным понятиям как: группа, поле и вообще считается основателем современной высшей алгебры.

Читать полностью »

Автор статьи: Брюс Шнайер — американский криптограф, писатель и специалист по компьютерной безопасности. Автор нескольких книг по безопасности, криптографии и ИБ. Основатель криптографической компании Counterpane Internet Security, Inc., член совета директоров Международной ассоциации криптологических исследований и член консультативного совета Информационного центра электронной приватности.

Криптография после высадки инопланетян - 1Квантовые вычисления — это новый способ производить расчёты, который позволит человечеству выполнять вычисления, просто невозможные с использованием современных компьютеров. Возможность быстрого поиска сломает некоторые из современных алгоритмов шифрования. А лёгкая факторизация больших чисел сломает криптосистему RSA с любой длиной ключа.

Именно поэтому криптографы сейчас усиленно разрабатывают и анализируют «квантово-устойчивые» алгоритмы с открытым ключом. В настоящее время квантовые вычисления пока не готовы для нормальной оценки: что безопасно, а что нет. Но если предположить, что инопланетяне разработали технологию в полном объёме, то квантовые вычисления — не конец света для криптографии. Для симметричной криптографии квантово-устойчивость обеспечить элементарно, а сейчас мы ищем квантово-стойкие алгоритмы шифрования с открытым ключом. Если криптография с открытым ключом окажется временной аномалией, которая существует благодаря пробелам в наших математических знаниях и вычислительных способностях, мы всё равно выживем. И если какая-то немыслимая инопланетная технология сломает всю криптографию, у нас останется секретность, основанная на теории информации, пусть и со значительными потерями возможностей.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js