Рубрика «дифференциальные уравнения»

Отчего "гнётся и рвётся" пропеллер на фото и видео вы, наверняка, знаете. А какую именно форму принимают лопасти винта? Как зависит их видимая форма от скорости вращения? И причём здесь гиперболы?

Мой сын очень уважает самолёты. Особенно, турбовинтовые: здорово же, когда видно как работает двигатель и как вертится пропеллер! А какую интересную форму принимают винты при съёмке на телефон или цифровую камеру! Класс!

Читать полностью »

В одном из проектов, над которыми мне довелось работать, был реализован механизм обмена данными между удалёнными компонентами системы, работавший по следующему сценарию: компонент-источник А на своей стороне подготавливает данные, предназначенные для передачи; компонент-получатель Б периодически открывает сеанс связи и забирает все данные, которые накопил А на момент подключения. Данные, поступающие уже в во время сеанса связи, откладываются до следующего подключения.

В какой-то момент я понял, что передача данных в такой схеме описывается с помощью обыкновенного дифференциального уравнения. Описание модели и выводы, которые удалось получить с её помощью, под катом.
Читать полностью »

Добрый день, дорогие пользователи habr.com! Сегодня православные христиане празднуют Пасху, и мне кажется, что многие задаются вопросом: «Какой же объём у куриного (страусиного, перепелиного и т.д.) яйца»? Это действительно интересная математическая задача, которую мы с Вами постараемся решить в этой статье. Приятного чтения!
Читать полностью »

Некоторое время назад между мной и моим хорошим другом состоялся разговор, в котором прозвучали такие фразы:

— Количество программистов будет постоянно расти — ведь количество кода растет, и для его поддержки постоянно требуется все больше разработчиков.
— Но код стареет, часть его уходит из поддержки. Не исключено даже наличие какого-то равновесия.

Вспомнив их через несколько дней, я задумался, действительно ли поддержка кода, требуя с течением времени все больше и больше ресурсов, может в конечном счете парализовать разработку нового функционала, либо потребует неограниченного увеличения количества программистов? Качественно оценить зависимость объёма поддержки от разработки и найти ответы на вопросы помогли математический анализ и дифференциальные уравнения.
Читать полностью »

Символьное решение линейных дифференциальных уравнений и систем методом преобразований Лапласа c применением SymPy - 1

Реализация алгоритмов на языке Python с использованием символьных вычислений очень удобна при решении задач математического моделирования объектов, заданных дифференциальными уравнениями. Для решения таких уравнений широко используются преобразования Лапласа, которые, говоря упрощенно, позволяют свести задачу к решению простейших алгебраических уравнений.
В данной публикации предлагаю рассмотреть функции прямого и обратного преобразования Лапласа из библиотеки SymPy, которые позволяют использовать метод Лапласа для решения дифференциальных уравнений и систем средствами Python.
Читать полностью »

Подвесные топливные баки для самолётов - 1

Введение

Часто, для обеспечения большой дальности полета, к самолету снаружи подвешивают дополнительные баки. Подвесные баки бывают сбрасываемые и не сбрасываемые.

Сбрасываемые подвесные баки после расходования из них топлива сбрасываются так же, как и авиационные бомбы с замков бомбодержателей, на которые они подвешиваются.

Питание из подвесных баков осуществляется включением трубопроводов от этих баков в общую систему питания двигателя топливом через запорный или многоходовой кран.

Интересным фактом является то, что во вьетнамских джунглях после войны стали находить много сброшенных американскими самолётами топливных баков.

Крестьяне распиливают баки вдоль и получаются две лодки. Такая лодка не ржавеет, мало весит, а благодаря аэродинамической форме на ней очень легко грести.

Подвесные топливные баки для самолётов - 2

Читать полностью »

Данная статья посвящена собственной реализации (солвер Joker FEM) метода конечных элементов для систем уравнений диффузии-реакции.

Обычно предпочтительнее использовать готовые решения, однако если в задаче есть специфические особенности, то на основе простой библиотеки задачу решить легче.

Читать полностью »

Биткойн и другие криптовалюты захватили внимание огромного количества людей. Почему бы не воспользоваться этим шансом для популяризации математики и, в частности, Mathcad? В этой статье мы рассмотрим несколько простых широко известных моделей на основе дифференциальных уравнений, а именно, семейства логистических моделей (неограниченного роста, с конкуренцией за ресурс, с промыслом и запаздыванием). Впервые системный фактор, ограничивающий рост биологической популяции, предложил бельгийский математик Ферхюльст, поэтому соответствующая модель (она будет рассмотрена второй по счету) по праву носит его имя.

Поскольку все, что происходит в последнее время с с биткойном, похоже на пирамиду, то и модели будут соответствующие, тем более, что математическому аппарату, благодаря МММ, уже в разное время посвящало свои статьи множество коллег, например, М.Баландин и В.Очков. Основное внимание, как и раньше, мы уделим приемам расчетов в Mathcad, в особенности, в его бесплатной версии Mathcad Express, не настаивая на точности прогноза, каким будет курс биткойна в ближайшее время, и когда именно он рухнет.
Ферхюльстом по биткойну - 1

Читать полностью »

Введение

Изменение курса валют на финансовом рынке влияет на цены товаров и услуг. Поэтому важно знать период времени через который цены начнут реагировать на смену курса валют.

Сложность решения указанной задачи состоит в большом количестве факторов влияющих на смену курса валют [1]. Эффективным способом отсеять ряд второстепенных факторов для определения основных тенденций рынка является применения «белого» фильтра Винера Хопфа [2,3].

Понятно, что только применение фильтра не решает всех проблем анализа влияния курса валют на финансовый рынок, однако, как один из инструментов анализа безусловно интересен. Кроме этого на примере такого фильтра можно определить коэффициенты дифференциального уравнения финансового рынка.

Постановка задачи

На основе данных о колебаниях курса валюты с использованием корреляционного анализа и системы уравнений Винера Хопфа построить динамическую модель финансового рынка при помощи которой определить временные интервалы реагирования цен на смену курса валют.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js