Токсичность в интернете — распространенная проблема, с которой сталкивался каждый. В период бурного развития AI само собой напрашивается решение для автоматического удаления токсичных паттернов с сохранением исходного смысла и оригинального стиля автора. Один из таких подходов - использование NLP seq2seq моделей, которые мы обучаем на парах (тоcкичное предложение; нетоксичное предложение):
Рубрика «deeplearning»
Как мы сделали систему для спасения интернета от токсичности
2024-10-25 в 20:25, admin, рубрики: AI, dataScience, deeplearning, llm, nlpКак простые NLP модели видят слова? | NLP | Пишем свой TF-IDF
2024-08-17 в 12:15, admin, рубрики: AI, deeplearning, jupyter notebook, machinelearning, math, nlp, numpy, pandas, python, tfidfvectorizerКак модели видят наш текст?
Когда начинаешь погружаться в сферу NLP, сразу задумываешься, как модели представляют себе наш текст/наши слова? Ведь не логично бы звучало, если модель обрабатывала наши слова, как обычную последовательность букв. Это было бы не удобно и не понятно(как проводить операции со словами?).
Есть разные методы преобразования слов. Один из самых известных для не самых сложных моделей: TF-IDF.
Как работает TF-IDF?
TF-IDF(Term Frequency-Inverse Document Frequency) — это метод, который преобразует слова в числовые векторы, что делает их более понятными для моделей машинного обучения.
Как мы нейросеть в браузер тащили
2023-03-18 в 14:59, admin, рубрики: c++, deeplearning, javascript, ONNX, onnxruntime, wasm, webassembly, браузеры, машинное обучениеЗдравствуйте, товарищи! Хочу написать a good story про то, как портировал нейросеть в браузер.
Задача пришла ко мне от моих институтских друзей из ИВМ РАН. Есть некий фронтенд, на который доктор загружает КТ снимок. Доктору предлагается при помощи веб интерфейса выделить сектор с сердцем, который будет передан на сервер, где алгоритмически отсегментируется граф аорты для последующего анализа.
Меня попросили сделать нейросеть для выделения 3d сектора с сердцем, а затрачиваемое время не должно превышать 2-3 секунд.
Классификация кассовых чеков
2021-11-01 в 8:15, admin, рубрики: big data, deeplearning, FastText, machinelearning, nlp, python, искусственный интеллект, машинное обучение, ОФД, Хакатоны, чекиКак мы создали рекомендательный сервис по подбору одежды на нейронных сетях
2019-02-02 в 10:35, admin, рубрики: deeplearning, детектирование, классификация, машинное обучение, нейронные сети, обработка изображений, рекомендательные системы
В этой статье я хочу рассказать о том, как мы создали систему поиска похожей одежды (точнее одежды, обуви и сумок) по фотографии. То есть, выражаясь бизнес-терминами, рекомендательный сервис на основе нейронных сетей.
Как и большинство современных IT-решений, можно сравнить разработку нашей системы со сборкой конструктора Lego, когда мы берем много маленьких деталек, инструкцию и создаем из этого готовую модель. Вот такую инструкцию: какие детали взять и как их применить для того, чтобы ваша GPU смогла подбирать похожие товары по фотографии, — вы и найдете в этой статье.
Из каких деталей построена наша система:
- детектор и классификатор одежды, обуви и сумок на изображениях;
- краулер, индексатор или модуль работы с электронными каталогами магазинов;
- модуль поиска похожих изображений;
- JSON-API для удобного взаимодействия с любым устройством и сервисом;
- веб-интерфейс или мобильное приложение для просмотра результатов.
В конце статьи будут описаны все “грабли”, на которые мы наступили во время разработки и рекомендации, как их нейтрализовать.
Постановка задачи и создание рубрикатора
Задача и основной use-case системы звучит довольно просто и понятно:
- пользователь подает на вход (например, посредством мобильного приложения) фотографию, на которой присутствуют предметы одежды и/или сумки и/или обувь;
- система определяет (детектирует) все эти предметы;
- находит к каждому из них максимально похожие (релевантные) товары в реальных интернет-магазинах;
- выдает пользователю товары с возможностью перейти на конкретную страницу товара для покупки.
Говоря проще, цель нашей системы — ответить на знаменитый вопрос: “А у вас нет такого же, только с перламутровыми пуговицами?”
Читать полностью »
Человек машине помощник
2018-06-03 в 19:05, admin, рубрики: data mining, deeplearning, machine learning, ocr, Блог компании Recognitor, Компьютерное зрение, машинное обучение, распознавание текстаЭтот блог обычно посвящен распознаванию автомобильных номеров. Но, работая над этой задачей, мы пришли к интересному решению, которое можно с легкостью применять для очень широкого круга задач компьютерного зрения. Об этом сейчас и расскажем: как делать систему распознавания, которая вас не подведет. А если подведет, то ей можно подсказать, где ошибка, переобучить и иметь уже чуть более надежное решение, чем прежде. Добро пожаловать под кат!