Сегодня я расскажу, как я применил алгоритмы глубинного обучения с подкреплением для управления роботом. Вкратце, поведаю о том, как создать «чёрный ящик с нейросетями», который на входе принимает архитектуру робота, а на выходе выдаёт алгоритм, способный им управлять.
Основой решения является алгоритм Advantage Actor Critic (A2C) с оценкой Advantage через Generalized Advantage Estimation (GAE).
Под катом математика, реализация на TensorFlow и множество демок того, к каким способам ходьбы сошлись алгоритмы.