Рубрика «deep learning» - 6

7 лет хайпа нейросетей в графиках и вдохновляющие перспективы Deep Learning 2020-х - 1

Новый год все ближе, скоро закончатся 2010-е годы, подарившие миру нашумевший ренессанс нейросетей. Мне не давала покоя и лишала сна простая мысль: «Как можно ретроспективно прикинуть скорость развития нейросетей?» Ибо «Тот, кто знает прошлое — тот знает и будущее». Как быстро «взлетали» разные алгоритмы? Как вообще можно оценить скорость прогресса в этой области и прикинуть скорость прогресса в следующем десятилетии? 

7 лет хайпа нейросетей в графиках и вдохновляющие перспективы Deep Learning 2020-х - 2

Понятно, что можно примерно посчитать количество статей по разным областям. Метод не идеальный, нужно учитывать подобласти, но в целом можно пробовать. Дарю идею, по Google Scholar (BatchNorm) это вполне реально! Можно считать новые датасеты, можно новые курсы. Ваш же покорный слуга, перебрав несколько вариантов, остановился на Google Trends (BatchNorm)

Мы с коллегами взяли запросы основных технологий ML/DL, например, Batch Normalization, как на картинке выше, точкой добавили дату публикации статьи и получили вполне себе график взлета популярности темы. Но не у всех тем путь усыпан розами взлет такой явный и красивый, как у батчнорма. Некоторые термины, например регуляризацию или skip connections, вообще не получилось построить из-за зашумленности данных. Но в целом тренды собрать удалось.

Кому интересно, что получилось — добро пожаловать под кат!
Читать полностью »

Около года назад разработчики PyTorch представили сообществу TorchScript — инструмент, который позволяет с помощью пары строк кода и нескольких щелчков мыши сделать из пайплайна на питоне отчуждаемое решение, которое можно встроить в систему на C++. Ниже я делюсь опытом его использования и постараюсь описать встречающиеся на этом пути подводные камни. Особенное внимание уделю реализации проекта на Windows, поскольку, хотя исследования в ML обычно делаются на Ubuntu, конечное решение часто (внезапно!) требуется под "окошками".

Примеры кода для экспорта модели и проекта на C++, использующего модель, можно найти в репозиториии на GitHub.

Как подружить PyTorch и C++. Используем TorchScript - 1

Читать полностью »

  1. Mall Customers Dataset — данные посетителей магазина: id, пол, возраст, доход, рейтинг трат. (Вариант применения: Customer Segmentation Project with Machine Learning)
  2. Iris Dataset — датасет для новичков, содержащий размеры чашелистиков и лепестков для различных цветков.
  3. MNIST Dataset — датасет рукописных цифр. 60 000 тренировочных изображений и 10 000 тестовых изображений.
  4. The Boston Housing DatasetЧитать полностью »

Data Science для начинающих

1. Sentiment Analysis (Анализ настроений через текст)

image

Посмотрите полную реализацию проекта Data Science с использованием исходного кода — Sentiment Analysis Project в R.

Sentiment Analysis — это анализ слов для определения настроений и мнений, которые могут быть положительными или отрицательными. Это тип классификации, при котором классы могут быть двоичными (положительными и отрицательными) или множественными (счастливыми, злыми, грустными, противными ...). Мы реализуем этот Data Science проект на языке R и будем использовать набор данных в пакете «janeaustenR». Мы будем использовать словари общего назначения, такие как AFINN, bing и loughran, выполнять внутреннее соединение, и в конце мы создадим облако слов, чтобы отобразить результат.

Язык: R
Набор данных/Пакет: janeaustenR
Читать полностью »

Эксплуатация машинного обучения в Почте Mail.ru - 1

По мотивам моих выступлений на Highload++ и DataFest Minsk 2019 г.

Для многих сегодня почта является неотъемлемой частью жизни в сети. С ее помощью мы ведем бизнес-переписку, храним всевозможную важную информацию, связанную с финансами, бронированием отелей, оформлением заказов и многим другим. В середине 2018 года мы сформулировали продуктовую стратегию развития почты. Какой же должна быть современная почта?

Почта обязана быть умной, то есть помогать пользователям ориентироваться в увеличивающемся объеме информации: фильтровать, структурировать и предоставлять ее наиболее удобным способом. Она должна быть полезной, позволяя прямо в почтовом ящике решать различные задачи, например, оплачивать штрафы (функция, которой я, к своему сожалению, пользуюсь). И при этом, разумеется, почта должна обеспечивать информационную защиту, отсекая спам и защищая от взломов, то есть быть безопасной.
Читать полностью »

Всем привет! В первой статье из нашего цикла мы узнали, что такое DeepPavlov, какие модели библиотеки готовы к использованию без предварительного обучения и как запустить REST серверы с ними. Перед тем, как приступить к обучению моделей, мы расскажем о различных возможностях деплоймента моделей DeepPavlov и некоторых особенностях настройки библиотеки.

Договоримся, что все скрипты запуска библиотеки выполняются в environment Python с установленной библиотекой DeepPavlov (про установку см. первую статью, про virtualenv можно прочитать здесь). Примеры из этой статьи не требуют знания синтаксиса Python.

DeepPavlov для разработчиков: #2 настройка и деплоймент - 1
Читать полностью »

Недавно прошел ID R&D Voice Antispoofing Challenge, главной задачей которого было создать алгоритм, способный отличить человеческий голос (human) от синтезированной записи (spoof). Я — ML Researcher в Dasha AI и много работаю над распознаванием речи, поэтому и решил поучаствовать. Вместе с командой мы заняли первое место. Под катом я расскажу о новых крутых подходах к обработке звука, а также о сложностях и странностях, с которыми нам пришлось столкнуться.

Что ты такое? Как мы spoof от human отличали — да еще и победили - 1

Читать полностью »

Всем привет!

У нас доступна для предзаказа одна из лучших книг по обучению с подкреплением, в оригинале именуемая "Deep Reinforcement Learning Hands-on" под авторством Максима Лапаня. Вот как будет выглядеть обложка русского перевода:

«Глубокое обучение с подкреплением. AlphaGo и другие технологии»: анонс книги - 1

Чтобы вы могли оценить краткое содержание книги, предлагаем вам перевод обзора, написанного автором к выходу оригинала.
Читать полностью »

В продолжение некогда поднятой в нашем блоге темы игрового искусственного интеллекта поговорим о том, насколько применимо к нему машинное обучение и в каком виде. Своим опытом и выбранными на его основе решениями поделился эксперт по вопросам ИИ в Apex Game Tools Якоб Расмуссен.

Как устроен гибридный игровой ИИ и в чём его преимущества - 1

В последние годы ведётся много разговоров о том, что машинное обучение кардинально изменит игровую индустрию, ведь эта технология уже стала прорывной во многих других цифровых приложениях. Но не стоит забывать, что игры устроены намного сложнее, чем симулятор вождения автомобиля, программа управления дроном или алгоритмы распознавания лиц на изображении. Читать полностью »

В статье пойдет речь о классификации тональности текстовых сообщений на русском языке (а по сути любой классификации текстов, используя те же технологии). За основу возьмем данную статью, в которой была рассмотрена классификация тональности на архитектуре CNN с использованием Word2vec модели. В нашем примере будем решать ту же самую задачу разделения твитов на позитивные и негативные на том же самом датасете с использованием модели ULMFit. Результат из статьи, (average F1-score = 0.78142) примем в качестве baseline. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js