Рубрика «deep learning» - 3

Привет!

Два последних года я в рамках магистерской диссертации разбирался с тем, как лучше использовать рекуррентные нейронные сети для прогнозирования временных рядов, и теперь хочу поделиться моим опытом с сообществом.

Я разделил свой рассказ на несколько блоков:

  • Что такое RNN

  • Рекуррентные нейроны

  • Методы обработки временных рядов

  • Стратегии прогнозирования

  • Добавление факторов в RNN

  • Глобальные модели RNN

Читать полностью »

Неинтересная цель этой статьи — показать, как можно смержить две свертки пайторча в одну. Если интересна лишь реализация — прошу в конец статьи.

А интересная цель — потыкать непосредственно в веса моделей на примере объединения свёрток. Узнать, как они хранятся и используются конкретно в pytorch, не вдаваясь в хардкорные интересности по типу im2col.
Но перед тем, как показывать реализацию, давайте немного вспомним, с чем работаем.

Читать полностью »

Привет! Меня зовут Александр, я работаю в команде матчинга Ozon. Ежедневно мы имеем дело с десятками миллионов товаров, и наша задача — поиск и сопоставление одинаковых предложений (нахождение матчей) на нашей площадке, чтобы вы не видели бесконечную ленту одинаковых товаров.
На странице любого товара на Ozon есть картинки, заголовок, описание и дополнительные атрибуты. Всю эту информацию мы хотим извлекать и обрабатывать для решения разных задач. И особенно она важна для команды матчинга. 
Чтобы извлекать признаки из товара, мы строим его векторные представления (эмбеддинги), используя различные текстовые модели (fastText, трансформеры) для описаний и заголовков и целый набор архитектур свёрточных сетей (ResNet, Effnet, NFNet) — для картинок. Далее эти векторы используются для генерации фичей и товарного сопоставления.
На Ozon ежедневно появляются миллионы обновлений — и считать эмбеддинги для всех моделей становится проблематично. А что, если вместо этого (где каждый вектор описывает отдельную часть товара) мы получим один вектор для всего товара сразу? Звучит неплохо, только как бы это грамотно реализовать…

Векторное представление товаров Prod2Vec: как мы улучшили матчинг и избавились от кучи эмбеддингов - 1
Читать полностью »

Рождение Albumentations - 1

В этом посте я расскажу историю появления Open Source библиотеки Albumentations как я ее запомнил. В технические детали углубляться не буду. Основная задача текста - логирование, то есть надо написать историю, которую мне будет интересно прочитать через 20 лет.

Читать полностью »

Разбираем редкого зверя от Nvidia — DGX A100 - 1

Крупные IT-компании располагают дорогими «игрушками», которые скрыты от взоров большинства пользователей. Сегодня мы приоткроем завесу тайны и расскажем про систему, которая оптимизирована для работы с искусственным интеллектом.

Задачи ИИ предъявляют высокие требования к вычислительным и сетевым ресурсам, поэтому наш сегодняшний «гость» приятно порадует своей конфигурацией. Встречайте: NVIDIA DGX A100.
Читать полностью »

Вот уже лет сто, а то и больше, человечество мечтает, размышляет, пишет, поёт, снимает фильмы о машинах, которые могут думать, рассуждать и, подобно нам, обладают разумом. Произведения литературного и кинематографического искусства — начиная с романа «Едгин», опубликованного в 1872 году Сэмюэлем Батлером, со статьи Эдгара Аллана По «Игрок в шахматы Мельцеля», с фильма «Метрополис» 1927 года — продемонстрировали миру идею, в соответствии с которой машины могут думать и рассуждать как люди. Причём, в этой идее нет ни магии, ни ещё чего-то фантастического. Те, кого захватывала эта идея, вдохновлялись автоматонами из глубокой древности и работами философов — таких, как Аристотель, Раймунд Луллий, Томас Гоббс и многих, многих других.

Нейроморфные вычисления и их успехи - 1

Идеи философов о человеческом разуме привели к вере в то, что рациональное мышление можно описать, пользуясь алгебраическими или логическими механизмами. Позже, с появлением электронных приборов, компьютеров и закона Мура, человечество попало в состояние постоянного ожидания того, что вот ещё немного — и появится машина, разум которой сравним с человеческим. Некоторые объявляли разумные машины спасителями человечества, а некоторые видели в этих машинах источник великого бедствия, так как полагали, что появление на Земле второй разумной сущности приведёт к уничтожению первой, то есть — людей.
Читать полностью »

Закройте глаза и представьте себя в цехах большого завода. Пусть это будет производство вакцин в ампулах. А вы, как и еще 70 человек, заняты тем, что целыми днями просматриваете ампулы, чтобы отобрать дефектные. И так весь день… Сколько ампул с малейшими отклонениями от нормы вы бы не заметили? Задачу усложняет то, что дефектом считается не только неправильная запайка, но и едва заметная точка на дне ампулы. Можете ли вы быть на 100% уверены, что не пропустили ни одного дефекта? А ведь вас еще будут выборочно перепроверять.

Устают глаза, притупляется внимание.

Читать полностью »

Кадр из аниме "Жрица и медведь"
Кадр из аниме "Жрица и медведь"

Задача отслеживания объектов на изображении - одна из самых горячих и востребованных областей ML. Однако уже сейчас мы имеем огромное разнообразие различных техник и инструментов. Данная статья поможет начать Ваш путь в мир компьютерного зрения!

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js