Рубрика «deep learning» - 20

Здравствуй!

Библиотека глубокого обучения Tensorflow - 1

Цикл статей по инструментам для обучения нейронных сетей продолжается обзором популярного фреймворка Tensorflow.

Читать полностью »

Kaggle: Британские спутниковые снимки. Как мы взяли третье место - 1

Сразу оговорюсь, что данный текст — это не сухая выжимка основных идей с красивыми графиками и обилием технических терминов (такой текст называется научной статьей и я его обязательно напишу, но потом, когда нам заплатят призовые $20000, а то, не дай бог, начнутся разговоры про лицензию, авторские права и прочее). К моему сожалению, пока устаканиваются все детали, мы не можем поделиться кодом, который написали под эту задачу, так как хотим получить деньги. Как всё утрясётся — обязательно займемся этим вопросом.

Так вот, данный текст — это скорее байки по мотивам, в которых, с одной стороны, всё — правда, а с другой, обилие лирических отступлений и прочей отсебятины не позволяет рассматривать его как что-то наукоемкое, а скорее просто как полезное и увлекательное чтиво, цель которого показать, как может происходить процесс работы над задачами в дисциплине соревновательного машинного обучения. Кроме того, в тексте достаточно много лексикона, который специфичен для Kaggle и что-то я буду по ходу объяснять, а что-то оставлю так, например, вопрос про гусей раскрыт не будет.
Читать полностью »

Привет! Предлагаем вам перевод поста “Getting Started with Deep Learning” от Мэтью Рубашкина из Silicon Valley Data Science о преимуществах и недостатках существующих Deep Learning технологий и о том, какой фреймворк выбрать, учитывая специфику задачи и способности команды.

image

Читать полностью »

Привет! За последние годы новые подходы в обучении нейронных сетей позволили существенно расширить сферы практического применения машинного обучения. А появление большого количества хороших высокоуровневых библиотек дало возможность проверить свои навыки специалистам разного уровня подготовки.

Имея некоторый опыт в машинном обучении, я до текущего момента не имел дело конкретно с нейронными сетями. На волне их стремительной популярности было принято решение заполнить данный пробел и заодно попробовать написать об этом статью.

Я поставил себе две цели. Первая, придумать задачу, достаточно сложную чтобы при её решении столкнуться с проблемами, возникающими в реальной жизни. И вторая, решить эту задачу с использование одной из современных библиотек, разобравшись с особенностями работы с ними.

В качестве библиотеки был выбран TensorFlow. А за задачей и её решением прошу под кат…
Читать полностью »

Привет!

Библиотеки для глубокого обучения Theano-Lasagne - 1

Параллельно с публикациями статей открытого курса по машинному обучению мы решили запустить ещё одну серию — о работе с популярными фреймворками для нейронных сетей и глубокого обучения.
Я открою этот цикл статьёй о Theano — библиотеке, которая используется для разработки систем машинного обучения как сама по себе, так и в качестве вычислительного бекэнда для более высокоуровневых библиотек, например, Lasagne, Keras или Blocks.

Theano разрабатывается с 2007 года главным образом группой MILA из Университета Монреаля и названа в честь древнегреческой женщины-философа и математика Феано (предположительно изображена на картинке). Основными принципами являются: интеграция с numpy, прозрачное использование различных вычислительных устройств (главным образом GPU), динамическая генерация оптимизированного С-кода.

Читать полностью »

image

Введение

В последние годы вездесущие нейронные сети находят все больше и больше применений в различных областях знаний, вытесняя классические алгоритмы, использовавшиеся многие годы. Не стала исключением и область компьютерного зрения, где год за годом все больше и больше задач решаются при помощи современных нейронных сетей. Настало время написать об еще одном павшем бойце в войне "Традиционное зрение vs. Глубокое Обучение". Долгие годы на задаче поиска локальных особенностей изображений (так называемых ключевых точек) безраздельно властвовал алгоритм SIFT(Scale-invariant Feature Transform), предложеный в далеком 1999 году, многие сложили головы в попытках превзойти его, но удалось это лишь Deep Learning'у. Итак, встречайте, новый алгоритм поиска локальных особенностей — LIFT (Learned Invariant Feature Transform).

Читать полностью »

Вы все, наверное, уже видели сверх-реалистичных кошечек, которых можно рисовать вот тут:
https://affinelayer.com/pixsrv/
image

Давайте разбираться, что же там внутре.

Читать полностью »

image

История обучения с подкреплением в зависимости от того, как считать насчитывает от полутора веков до 60 лет. Последняя волна (которая захлестывает сейчас нас всех) началась вместе с подъемом всего машинного обучения в середине 90-ых годов 20-ого века. Но люди, которые сейчас на гребне этой волны начинали само собой не сейчас, а во время предыдущего всплеска интереса — в 80-ых. В процессе знакомства с историей нам встретятся многие персонажи, который сыграли роль в становлении учения об искусственном интеллекте (которое мы обсуждали в прошлой статье). Само собой, это неудивительно, ведь обучение с подкреплением — его неотъемлемая часть. Хотя обо всем по порядку.

Само название “обучение с подкреплением” взято из работ известного русского физиолога, нобелевского лауреата Ивана Петровича Павлова. В 1923 вышел его труд “Двадцатилетний опыт объективного изучения высшей нервной деятельности (поведения) животных” [1], известный на западе как Conditional Reflexes [2]. Но психологические подходы были известны и ранее.

Читать полностью »

Создаём нейронную сеть InceptionV3 для распознавания изображений - 1

Привет! Под катом пойдёт речь о реализации свёрточной нейронной сети архитектуры InceptionV3 с использованием фреймворка Keras. Статью я решил написать после ознакомления с туториалом "Построение мощных моделей классификации с использованием небольшого количества данных". С одобрения автора туториала я немного изменил содержание своей статьи. В отличие от предложенной автором нейронной сети VGG16, мы будем обучать гугловскую глубокую нейронную сеть Inception V3, которая уже предустановлена в Keras.

Вы научитесь:

  1. Импортировать нейронную сеть Inception V3 из библиотеки Keras;
  2. Настраивать сеть: загружать веса, изменять верхнюю часть модели (fc-layers), таким образом, приспосабливая модель под бинарную классификацию;
  3. Проводить тонкую настройку нижнего свёрточного слоя нейронной сети;
  4. Применять аугментацию данных при помощи ImageDataGenerator;
  5. Обучать сеть по частям для экономии ресурсов и времени;
  6. Оценивать работу модели.

При написании статьи я ставил перед собой задачу представить максимально практичный материал, который раскроет некоторые интересные возможности фреймворка Keras.
Читать полностью »

Вебинар: Введение в Singularity - 1

Команда FlyElephant приглашает всех на вебинар "Введение в Singularity", который проведет
Gregory Kurtzer (HPC Systems Architect и Technical Lead в Lawrence Berkeley National Laboratory).
Вебинар будет проходить завтра, 15 февраля, в 19:00 (EET) / 9:00 am (PST). Язык — английский.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js