Рубрика «deep learning» - 18

AWS AI
Недавно, команда AWSDeepLearning выпустила новый фреймворк — “sockeye”, цель которого является упрощение обучения seq2seq сетей. Забегая вперед — я даже не ожидал такой простоты. Так что решил написать простое, быстрое и самодостаточное руководство, которое не требует от читателя глубоких знаний в области нейронных сетей. Единственное, что все же требуется для успешного выполнения всех шагов, это иметь некоторый опыт работы с:

  • AWS EC2;
  • SSH;
  • python;

Если все эти три вещи не вызывают проблем — прошу под кат.
Читать полностью »

Отжиг и вымораживание: две свежие идеи, как ускорить обучение глубоких сетей - 1

В этом посте изложены две недавно опубликованные идеи, как ускорить процесс обучения глубоких нейронных сетей при увеличении точности предсказания. Предложенные (разными авторами) способы ортогональны друг другу, и могут использоваться совместно и по отдельности. Предложенные здесь способы просты для понимания и реализации. Собственно, ссылки на оригиналы публикаций:

Читать полностью »

Содержание

В позапрошлой части мы создали CVAE автоэнкодер, декодер которого умеет генерировать цифру заданного лейбла, мы также попробовали создавать картинки цифр других лейблов в стиле заданной картинки. Получилось довольно хорошо, однако цифры генерировались смазанными.
В прошлой части мы изучили, как работают GAN’ы, получив довольно четкие изображения цифр, однако пропала возможность кодирования и переноса стиля.

В этой части попробуем взять лучшее от обоих подходов путем совмещения вариационных автоэнкодеров (VAE) и генеративных состязающихся сетей (GAN).

Подход, который будет описан далее, основан на статье [Autoencoding beyond pixels using a learned similarity metric, Larsen et al, 2016].

Автоэнкодеры в Keras, Часть 6: VAE + GAN - 1

Иллюстрация из [1]
Читать полностью »

Содержание

(Из-за вчерашнего бага с перезалитыми картинками на хабрасторейдж, случившегося не по моей вине, вчера был вынужден убрать эту статью сразу после публикации. Выкладываю заново.)

При всех преимуществах вариационных автоэнкодеров VAE, которыми мы занимались в предыдущих постах, они обладают одним существенным недостатком: из-за плохого способа сравнения оригинальных и восстановленных объектов, сгенерированные ими объекты хоть и похожи на объекты из обучающей выборки, но легко от них отличимы (например, размыты).

Этот недостаток в куда меньшей степени проявляется у другого подхода, а именно у генеративных состязающихся сетейGAN’ов.

Формально GAN’ы, конечно, не относятся к автоэнкодерам, однако между ними и вариационными автоэнкодерами есть сходства, они также пригодятся для следующей части. Так что не будет лишним с ними тоже познакомиться.

Коротко о GAN

GAN’ы впервые были предложены в статье [1, Generative Adversarial Nets, Goodfellow et al, 2014] и сейчас очень активно исследуются. Наиболее state-of-the-art генеративные модели так или иначе используют adversarial.

Схема GAN:

Автоэнкодеры в Keras, Часть 5: GAN(Generative Adversarial Networks) и tensorflow - 1

Читать полностью »

Содержание

В прошлой части мы познакомились с вариационными автоэнкодерами (VAE), реализовали такой на keras, а также поняли, как с его помощью генерировать изображения. Получившаяся модель, однако, обладала некоторыми недостатками:

  1. Не все цифры получилось хорошо закодировать в скрытом пространстве: некоторые цифры либо вообще отсутствовали, либо были очень смазанными. В промежутках между областями, в которых были сконцентрированы варианты одной и той же цифры, находились вообще какие-то бессмысленные иероглифы.
    Что тут писать, вот так выглядели сгенерированные цифры:

    Картинка

    Автоэнкодеры в Keras, Часть 4: Conditional VAE - 1

  2. Сложно было генерировать картинку какой-то заданной цифры. Для этого надо было смотреть, в какую область латентного пространства попадали изображения конкретной цифры, и сэмплить уже откуда-то оттуда, а тем более было сложно генерировать цифру в каком-то заданном стиле.

В этой части мы посмотрим, как можно лишь совсем немного усложнив модель преодолеть обе эти проблемы, и заодно получим возможность генерировать картинки новых цифр в стиле другой цифры – это, наверное, самая интересная фича будущей модели.

Автоэнкодеры в Keras, Часть 4: Conditional VAE - 2

Читать полностью »

Содержание

В прошлой части мы уже обсуждали, что такое скрытые переменные, взглянули на их распределение, а также поняли, что из распределения скрытых переменных в обычных автоэнкодерах сложно генерировать новые объекты. Для того чтобы можно было генерировать новые объекты, пространство скрытых переменных (latent variables) должно быть предсказуемым.

Вариационные автоэнкодеры (Variational Autoencoders) — это автоэнкодеры, которые учатся отображать объекты в заданное скрытое пространство и, соответственно, сэмплить из него. Поэтому вариационные автоэнкодеры относят также к семейству генеративных моделей.

Автоэнкодеры в Keras, Часть 3: Вариационные автоэнкодеры (VAE) - 1
Читать полностью »

Содержание

  • Часть 1: Введение
  • Часть 2: Manifold learning и скрытые (latent) переменные
  • Часть 3: Вариационные автоэнкодеры (VAE)
  • Часть 4: Conditional VAE
  • Часть 5: GAN (Generative Adversarial Networks) и tensorflow
  • Часть 6: VAE + GAN

Автоэнкодеры в Keras, Часть 2: Manifold learning и скрытые (latent) переменные - 1

Для того, чтобы лучше понимать, как работают автоэнкодеры, а также чтобы в последствии генерировать из кодов что-то новое, стоит разобраться в том, что такое коды и как их можно интерпретировать.
Читать полностью »

Автоэнкодеры в Keras

Часть 1: Введение

Содержание

Во время погружения в Deep Learning зацепила меня тема автоэнкодеров, особенно с точки зрения генерации новых объектов. Стремясь улучшить качество генерации, читал различные блоги и литературу на тему генеративных подходов. В результате набравшийся опыт решил облечь в небольшую серию статей, в которой постарался кратко и с примерами описать все те проблемные места с которыми сталкивался сам, заодно вводя в синтаксис Keras.

Автоэнкодеры

Автоэнкодеры — это нейронные сети прямого распространения, которые восстанавливают входной сигнал на выходе. Внутри у них имеется скрытый слой, который представляет собой код, описывающий модель. Автоэнкодеры конструируются таким образом, чтобы не иметь возможность точно скопировать вход на выходе. Обычно их ограничивают в размерности кода (он меньше, чем размерность сигнала) или штрафуют за активации в коде. Входной сигнал восстанавливается с ошибками из-за потерь при кодировании, но, чтобы их минимизировать, сеть вынуждена учиться отбирать наиболее важные признаки.

Автоэнкодеры в Keras, Часть 1: Введение - 1

Кому интересно, добро пожаловать под кат
Читать полностью »

Dropout — метод решения проблемы переобучения в нейронных сетях - 1

Переобучение (overfitting) — одна из проблем глубоких нейронных сетей (Deep Neural Networks, DNN), состоящая в следующем: модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к обучающим примерам, вместо того чтобы учиться классифицировать примеры, не участвовавшие в обучении (теряя способность к обобщению). За последние годы было предложено множество решений проблемы переобучения, но одно из них превзошло все остальные, благодаря своей простоте и прекрасным практическим результатам; это решение — Dropout (в русскоязычных источниках — “метод прореживания”, “метод исключения” или просто “дропаут”).
Читать полностью »

Хабр, нам тут пришла одна идея… В настоящий момент у нас возникло некое межсезонье между разными образовательными программами. Мы подумали, зачем нашей инфраструктуре зря простаивать, когда есть люди, которые могли бы на этой инфраструктуре что-то классное сделать.

Мы решили сделать небольшой вклад в развитие deep learning в России и выделить 3 виртуальных сервера с GPU тем, кто что-то делает в этой области. 2 виртуалки мы решили отдать нашим выпускникам, а 1 виртуалку дать в пользование кому-то «со стороны».

image

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js