Рубрика «data science» - 6

Работать с Data Science в Jupyter, конечно, очень приятно, но если вы хотите пойти дальше и развернуть свой проект или модель на облачном сервере, то здесь есть много отличных решений — с помощью Flask, Django или Streamlit. Хотя облачные решения по-прежнему самые популярные, часто хочется создать быстрое приложение с графическим интерфейсом. Например:

  • Модель ML тестируется на различных наборах данных. Вы можете перетащить файлы CSV в модель и отрисовать кривую AUS/ROC. Здесь GUI проявит себя прекрасно, правда?
  • Построить случайную переменную или статистическое распределение в заданном диапазоне и динамически управлять параметрами с помощью графического интерфейса.
  • Быстро запустить некоторые задачи обработки или предварительной обработки данных в наборе с помощью GUI вместо того, чтобы писать кучу кода.

В этой статье мы покажем, как создать такой графический интерфейс, потратив минимум усилий на изучение библиотеки Python.

Как сделать Data Science приложение для Windows (и не только) с графическим интерфейсом с помощью PySimpleGUI - 1


Читать полностью »

Когда тот, кто работает в сфере Data Science, собирается показать результаты своей деятельности другим людям, оказывается, что таблиц и отчётов, полных текстов, недостаточно для того чтобы представить всё наглядно и понятно. Именно в таких ситуациях возникает нужда в визуализации данных, в такой их обработке, которая позволит всем желающим в них разобраться и ухватить суть тех сложных процессов, которые они описывают.

В этом материале я расскажу о лучших бесплатных инструментах, позволяющих без особых сложностей создавать впечатляющие визуальные представления данных. При этом тут я не буду говорить о сложных системах вроде Power BI и Google Studio. Я выбрал те 8 инструментов, о которых пойдёт речь, из-за того, что ими легко пользоваться, из-за их приятного внешнего вида, из-за того, что работать с ними можно, не написав ни единой строчки программного кода и из-за того, что они бесплатны. Кроме того, они позволяют создавать интерактивные визуализации. А это значит, что графики, представляющие некие данные, могут содержать в себе больше сведений об этих данных, чем обычные изображения. Да и работать с такими графиками интереснее.

8 бесплатных инструментов для создания интерактивных визуализаций данных без необходимости написания кода - 1

Так как инструменты для визуализации данных то появляются, то исчезают, я включил в этот материал только те из них, которые, вероятнее всего, ещё долго будут пребывать в добром здравии. А это значит, что вполне разумным шагом будет вложение некоторого времени в их изучение. Как уже было сказано, пользоваться этими инструментам можно без написания кода. Но если вас интересует визуализация данных именно через код — взгляните на этот материал.
Читать полностью »

Делаем систему параллелизма надёжнее

Сегодня посмотрим как смоделировать программу с конкурентностью на FSP. Сначала давайте разберемся, зачем вообще нужна конкурентность. Вот что можно сделать с её помощью:

  • Повысить производительность многопроцессорного железа, это и называется параллелизм;
  • Увеличить пропускную способность приложения (вызову ввода-вывода нужно блокировать только один поток);
  • Сделать приложение отзывчивее за счёт выполнения основных задач параллельно фоновым (высокоприоритетный поток для запросов пользователей);
  • Структурировать программу, повысив её эффективность (взаимодействующие со средой программы управляют несколькими действиями и обрабатывают несколько событий).

Строим надёжную конкурентность с FSP и моделированием процессов - 1


Сгенерированная инструментом LTSA диаграмма состояний
Читать полностью »

В этой статье я хочу продемонстрировать R Markdown — удобную надстройку для программирования вашего проекта как на R, так и на Python, позволяющую программировать некоторые элементы вашего проекта на двух языках и управлять объектами, созданными на одном языке, с помощью другого языка. Это может быть полезно потому, что:

  1. Позволяет писать код на привычном языке, но при этом использовать функции, существующие только в другом языке.
  2. Позволяет напрямую сотрудничать с коллегой, который программирует на другом языке.
  3. Даёт возможность работать с двумя языками и со временем научиться свободно владеть ими.

Как быть билингвом в Data Science - 1


Читать полностью »

Хочу поделиться методами освоения Data science с нуля человеком из другой ИТ специальности. Цель: дать понять, подходит ли Вам эта специальность в принципе, и рассказать про эффективные подходы к самообучению, которые мне помогли (отдельно планирую потом детальные статьи по отдельным темам).

Отличные материалы уже существуют по большинству конкретных тем, я сам по ним учился.
Читать полностью »

Модели глубокого обучения улучшаются с увеличением количества данных и параметров. Даже с последней моделью GPT-3 от Open AI, которая использует 175 миллиардов параметров, нам ещё предстоит увидеть плато роста количества параметров.

Для некоторых областей, таких как NLP, рабочей лошадкой был Transformer, который требует огромных объёмов памяти графического процессора. Реалистичные модели просто не помещаются в памяти. Последний метод под названием Sharded  [букв. ‘сегментированный’] был представлен в Zero paper Microsoft, в котором они разработали метод, приближающий человечество к 1 триллиону параметров.

Специально к старту нового потока курса по Machine Learning, делюсь с вами статьей о Sharded в которой показывается, как использовать его с PyTorch сегодня для обучения моделей со вдвое большей памятью и всего за несколько минут. Эта возможность в PyTorch теперь доступна благодаря сотрудничеству между командами FairScale Facebook AI Research и PyTorch Lightning.

Как экономить память и удваивать размеры моделей PyTorch с новым методом Sharded - 1


Читать полностью »

Делюсь собственным опытом, т.к., наверняка, это будет интересно таким же как я, но может и не только. Заранее предупрежу, многие термины и сокращения будут понятны только тем, кто имеет базовые знания и какой-то опыт в Data Science и Машинном обучении.

Итак, в наличии на август 2020:

  • 8-летний бэкграунд в интернет-торговле и таргетированной рекламе

  • 4 курса известной в ds-тусовке Machine Learning специализации Яндекса на курсере

  • пара курсов по нейронным сетям на "стэпике"

  • слегка взъерошенный в памяти вышмат

  • пара сертификатов по питону

Читать полностью »

ИИ итоги уходящего 2020-го года в мире машинного обучения - 1

Подведем основные итоги уходящего года. Рассмотрим самые громкие открытия в мире компьютерного зрения, обработки естественного языка, генерации изображений и видео, а также крупный прорыв в области биологии. Коротко о самом главном за год!

Если тебе интересно машинное обучение, то приглашаю в «Мишин Лернинг»Читать полностью »

Заметки Датасатаниста: реляционные vs связанные данные - 1

Сегодня мы поговорим о простой, казалось бы, теме, как реляционные и связанные данные.

Несмотря на всю ее простоту, замечаю, что иногда люди действительно путаются в них — я решил это исправить, написав краткое и неформальное объяснение, чем они являются и зачем нужны.

Мы обсудим, что такое реляционная модель и связанные с ней SQL и реляционная алгебра. Потом перейдем к примерам связанных данных из Викидата, а далее RDF, SPARQL и чутка поговорим про Datalog и логическое представление данных. В конце выводы — когда применять реляционную модель, а когда связно-логическую.

Основная цель заметки — это описать, когда что имеет смысл применять и почему. Так как тут немало непростых концепций сошлись в одном месте, то конечно же можно было бы по каждой написать книгу — но наша задача сегодня дать представление о теме и мы будем разбирать неформально на простых примерах.

Если у вас есть сомнения, чем одно отличается от второго и зачем вообще нужны связанные данные (LinkedData), то добро пожаловать под кат.
Читать полностью »

Привет! Сегодня я расскажу, как развивается сфера Data Science. 2020 год стал переломным не только для мира в целом, сфера данных активно совершенствуется и сегодня можно уже подводить итоги года. Встречайте тренды DS в 2020-2021 году.

Главные тренды Data Science 2020 года, которые будут актуальны в 2021-м - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js