Рубрика «data science» - 38

Пропущенные значения в данных — обычное в реальных задачах явление. Нужно знать, как эффективно работать с ними, если цель — уменьшить погрешность и построить точную модель. Давайте рассмотрим разные варианты обработки пропущенных значений и их реализацию.
Читать полностью »

Здравствуйте, уважаемыее!

В настоящее время мы всерьез намерены в обозримом будущем порадовать вас серьезной книгой по машинному или глубинному обучению. Среди книг, вызвавших у нас наибольший интерес, особого упоминания заслуживает работа Себастьяна Рашки "Python Machine Learning"

Как я писал книгу 'Python Machine Learning' - 1

Предлагаем почитать, что сам автор рассказывает об этой книге. Мы позволили себе сократить статью практически вдвое, так как вся ее вторая часть посвящена тонкостям писательского труда и оформления книги, а тематические тонкости и актуальность темы рассмотрены в самом начале. Надеемся, что вам понравится текст, а нам — результаты опроса.
Читать полностью »

Microsoft DevCon 2016 — компьютерное зрение, SQL Server 2016, Data Science и не только - 1

Друзья, с удовольствием делюсь с вами анонсами сразу нескольких мастер-классов, которые ожидают участников в первый день конференции DevCon 2016!

Новый формат конференции предлагает вам окунуться не просто в атмосферу технологий Microsoft, а с помощью наших экспертов затронуть самые актуальные темы разработки под Windows, использования сервисов Azure, особенностей нового выпуска SQL Server 2016 и аналитики данных.

Мы рады представить вам темы мастер-классов и познакомить с экспертами:
Читать полностью »

В новом выпуске «Черной археологии датамайнинга» мы немного поиграемся в шпионов. Увидим, что может узнать обычный Data Specialist на основе открытых в сети данных.

Всё началось со статьи на хабре, о том, что некий анинимный хакер делился слитыми в сеть данными агентов ФБР. Я получил эти данные, и стал смотреть, что с ними можно сделать? В данных есть только фамилия, имя, и служебные мейлы и телефон – немного информации.

Fbi Detected: Как я обнаружил агентов ФБР - 1

Получив эти данные, я увидел, что они заканчиваются буквой J. То есть, датасет не полон. Интресено, каков его полный размер? Чтобы узнать его, надо построить статистику частоты встречаемости фамилий.

Для этого я начал искать наборы американских фамилий, и тут меня ждало открытие – в Америке можно найти открытые данные по, скажем, избирателям штата – как я понял, совершенно легально. Например, я за полчаса без проблем получаю данные всех избирателей штата Юта.

Читать полностью »

image

BuzzFeed специализируется на виральном контенте и при подготовке своих публикаций активно использует анализ данных. Этим в компании занимается специальный отдел, которым руководит 41-летняя Дао Нгуйен. Ее должность в Buzzfeed официально звучит, как «издатель» (publisher), но в прессе ее уже прозвали «царицей данных».

Дао Нгуйен не отвечает за распространение и продажи. Она руководит в Buzzfeed всеми работниками, которые не связаны напрямую с подготовкой контента и рекламы. Речь идет о технической части, работе с данными и всем, что так или иначе связано с издательской платформой. А это, ни много ни мало – более 100 человек, что составляет около шестой части всего коллектива Buzzfeed. 

Благодаря работе аналитического отдела трафик Buzzfeed увеличился в 5 раз.

Об особенностях своей работы издатель Buzzfeed рассказала в интервью FastCompany. Мы перевели самые интересные моменты.
Читать полностью »

6 дней назад около полуночи мы, команда «EC.Dota2» из четырех человек, начали работать над онлайн частью хакатона «Dota Science». Никто из нас ничего не знал об игре Dota2.

Сначала, хронологически, о первой, «онлайн» части. Есть сетка игр мирового финала «The Shanghai Major 2016». Нужно до матча предсказать его исход. Как показало время (но не описание конкурса), предсказывать нужно было матчи за 3, 4, 5 марта. Для обучения были даны исторические данные о матчах в Dota2 по разным прошлым турнирам с агрегированной информацией о каждом матче. Со среды пришлось начать недосыпать, т.к. все днем работают. Для онлайн этапа были разработаны две модели.

В качестве показателя качества прогноза использовалась следующая метрика: score=log2(p_winner)+1, где p_winner — предсказанная до начала матча вероятность победы команды, которая в результате победила.

Уроки участия в хакатоне «Dota Science» в рамках «Data Fest 2» - 1

Тут стоит сказать несколько слов о целях хакатона. Цель формальная — получить самую высокую относительно других оценку качества прогнозов. Цель, соответствующая смыслу Data Fest — построить самую лучшую, относительно других, модель для прогнозирования исхода матча методами машинного обучения.

Один выступающий в последний день Data Fest 2 (Nuker?) верно заметил, что «задачу машинного обучения всегда можно решить и без машинного обучения» (своими собственными нейронными сетями в голове). Кто использовал модели, кто использовал экспертный опыт, кто просто случайно играл? Неизвестно.

Финальная оценка первого этапа – среднее всех значений метрики качества для предсказанных вероятностей. Как показывает турнирная таблица первого этапа Хакатона, количество предсказаний на «команду» разнилось в 10-20 раз. Читать полностью »

Приглашаем на Data Fest 5 и 6 марта - 1

5 и 6 марта в московском офисе компании Mail.Ru Group состоится Data Fest2 — двухдневная серия митапов российских Data Science-сообществ Moscow Data Fest и Moscow Data Science. Data Fest2 — это конференция, на которой участникам представится возможность познакомиться с разными направлениями в современном анализе данных: от сугубо практических вопросов внедрения результатов исследований до самых последних теоретических разработок в анализе текстов и глубоком обучении.

В рамках конференции также пройдут два мероприятия, где все участники смогут проявить себя: хакатон для желающих посоревноваться друг с другом в предсказании исхода турнира по Dota 2 и питч-постер сессия для исследователей, где можно будет представить результаты своих исследований и разработок.
Читать полностью »

Пример работы системы
Это третья статья из серии про определение смайла по выражению лица.

Глубокое обучение в гараже — Братство данных
Глубокое обучение в гараже — Две сети
Глубокое обучение в гараже — Возвращение смайлов

Так что же со смайлами?

Фух, ну наконец, детекция лиц работает, можно учить сеть распознавания смайла. Только вот на чем учить? Открытых наборов данных нет. А из того, как долго в предыдущей части я добирался до, собственно, обучения моделей вы уже должны были понять, что в глубоком обучении данные решают все. И их нужно много.
Читать полностью »

Пример работы системы
Это вторая статья из серии про определение смайла по выражению лица.

Глубокое обучение в гараже — Братство данных
Глубокое обучение в гараже — Две сети

Калибрация

Итак, с классификатором, разобрались, но вы наверняка уже заметили, что заоблачные 99% как-то не очень впечатляюще выглядят во время боевого теста на детекцию. Вот и я заметил. Дополнительно видно, что в последних двух примерах очень мелкий шаг движения окон, так в жизни работать не будет. В настоящем, реальном запуске шаг ожидается больше похожим на картинку для первой сети, а там хорошо видно неприятный факт: как бы хорошо сеть не искала лица, окна будут плохо выровнены к лицам. И уменьшение шага — явно не подходящее решение этой проблемы для продакшена.
Читать полностью »

Пример работы системы
Вы тоже находите смайлы презабавнейшим феноменом?
В доисторические времена, когда я еще был школьником и только начинал постигать прелести интернета, с первых же добавленных в ICQ контактов смайлы ежедневно меня веселили: ну действительно, представьте, что ваш собеседник корчит рожу, которую шлет вам смайлом!

С тех пор утекло много воды, а я так и не повзрослел: все продолжаю иногда улыбаться присланным мне смайлам, представляя отправителя с глазами разного размера или дурацкой улыбкой на все лицо. Но не все так плохо, ведь с другой стороны я стал разработчиком и специалистом в анализе данных и машинном обучении! И вот, в прошлом году, мое внимание привлекла относительно новая, но интересная и будоражащая воображение технология глубокого обучения. Сотни умнейших ученых и крутейших инженеров планеты годами работали над его проблемами, и вот, наконец, обучать глубокие нейронные сети стало не сложнее "классических" методов, вроде обычных регрессий и деревянных ансамблей. И тут я вспомнил про смайлы!

Представьте, что чтобы отправить смайл, вы и вправду могли бы скорчить рожу, как бы было круто? Это отличное упражнение по глубокому обучению, решил я, и взялся за работу.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js