Рубрика «data science» - 30

Яндекс уже несколько лет сотрудничает с ЦЕРНом. Он сделал для учёных-физиков поиск по событиям в БАК, предоставил свои вычислительные ресурсы и технологии обработки данных — в том числе Матрикснет и ClickHouse. В 2014 году Яндекс стал ассоциированным членом CERN openlab.

Школа анализа данных Яндекса тоже принимает участие в экспериментах ЦЕРНа. Машинное обучение в наши дни становится «микроскопом» для современных учёных, которым необходимо изучать большие объемы данных и находить в них различные закономерности. В этом году ШАД совместно с лабораторией Методов анализа больших данных Вышки и Имперским колледжем Лондона организует в Великобритании международную школу, которая посвящена способам применения современных технологий в научных исследованиях.

Машинное обучение и поиск темной материи: соревнование от ЦЕРНа и Яндекса - 1
Эксперимент OPERA — из Швейцарии в Италию (картинка взята с сайта коллаборации OPERA)

Сегодня в рамках школы начинается открытое соревнование, участники которого будут ни много ни мало искать нейтрино. Принять участие в поисках мы приглашаем всех желающих. Им предстоит обрабатывать данные с международного эксперимента OPERA. Для этого будут предоставлены исходные данные — результаты сканирования слоев фотопленок одного «кирпича» эксперимента OPERA. Соревнование состоит из двух этапов. На первом этапе участники будут искать отдельный ливень в «кирпиче», первая вершина которого известна, на втором — несколько ливней, рассредоточенных по объему «кирпича» без дополнительной информации. Победители смогут рассказать о своих решениях ученым, работающим в ЦЕРНе.

Читать полностью »

Парсинг сайта blablacar.ru и анализ пассажиропотока из г. Клинцы Брянской области с помощью языка программирования R.

image

Читать полностью »

Сейчас проходит Data Science Game — международное студенческое соревнование по анализу данных. Ребята из МГУ выиграли отборочный этап, а затем рассказали о своём решении на одной из наших тренировок по машинному обучению.

Под катом — расшифровка и большинство слайдов.

Читать полностью »

Предисловие переводчика

Перевод внезапно удачно попал в струю других датасайенсных туториалов на хабре. :)
Этот написан Виком Паручури, основателем Dataquest.io, где как раз и занимаются подобного рода интерактивным обучением data science и подготовкой к реальной работе в этой области. Каких-то эксклюзивных ноу-хау здесь нет, но очень подробно рассказан процесс от сбора данных до первичных выводов о них, что может быть интересно не только желающим составить резюме на data science, но и тем, кто просто хочет попробовать себя в практическом анализе, но не знает, с чего начать.

Data science-компании всё чаще смотрят портфолио, когда принимают решение о приёме на работу. Это, в  частности, из-за того, что лучший способ судить о практических навыках — именно портфолио. И хорошая новость в том, что оно полностью в вашем распоряжении: если постараетесь – сможете собрать отличное портфолио, которым будут впечатлены многие компании.

Читать полностью »

В моей прошлой статье посвящённой освоению науки о данных (или по заграничному — Data Science) с абсолютного нуля (даже ниже чем -273 градуса по Кельвину) я обещал, что подготовлю материал о том, как я осваивал kaggle (буду писать с маленькой буквы, как у них на логотипе).

Для тех, кто так же, как и я только начинает знакомится с данным вопросом, поясню что как я понял kaggle это сайт, посвящённый соревнованиям и в некоторой степени обучению в области Data Science, где каждый может совершенно бесплатно и используя любые доступные инструменты, сделать прогноз по той или иной задаче.

Слов на ветер бросать не люблю, раз уж пообещал, то хочешь не хочешь — пиши, поэтому если вам интересно что же в итоге у меня из всего это вышло прошу под кат.

«Айсберг вместо Оскара!» или как я пробовал освоить азы DataScience на kaggle - 1
Читать полностью »

Не так давно я рассказывал о том, как случайно познакомился с понятием Data Science, благодаря курсам от Cognitive Class. Кратко резюмируя ту статью скажу, что по результатам курса я толком ничему не научился, но мне стало любопытно, поэтому спустя какое-то время я побежал в магазин и купил книгу, которой и посвящён данный материал.

Не знаю на сколько уместно на Хабре описывать возможность обучения по печатному самоучителю, но в конце концов этот хаб же про учебный процесс в IT и поэтому если вам интересно, чему может научить эта книга полного новичка в области Data Science и стоит ли тратить на этот этап время и деньги, то милости прошу под кат.
«Теперь он и тебя сосчитал» или Наука о данных с нуля (Data Science from Scratch) - 1
Читать полностью »

SmartData — новая конференция по большим и умным данным от JUG.ru Group - 1

21 октября в Петербурге мы проводим новую конференцию по большим и умным данным SmartData 2017 Piter.

О Big Data в последнее время говорят все: от школьников до Германа Грефа. И вот тут возникает некоторый диалектический дуализм: о проблемах работы с большими данными говорят много, вот только все разговоры — это переливание из пустого в порожнее или какой-нибудь махровый маркетинговый вздор. Больше всего пугает, что люди начинают верить в то, что где-то лежит несколько петабайт «больших данных», и их можно взять и «отбольшеданнить». За советом я обратился к Виталию Худобахшову из «Одноклассников», и я придерживаюсь схожей точки зрения, судите сами:

Большие данные – это не свойства объема или времени. То, что считается «много данных» сейчас, влезет на флешку через 10 лет. То, для чего сейчас нужен Hadoop-кластер в десятки или даже сотни узлов, можно будет решить на телефоне через те же самые 10 лет. Большие данные – это прежде всего новое качество, т.е. что-то, что нельзя получить с помощью меньшего набора данных. На самом деле таких примеров не так уж много, но их количество с нарастанием объема данных и улучшением их качества непрерывно увеличивается.

Иногда большие данные настолько облегчают жизнь, что для решения конкретной проблемы отпадает необходимость использовать продвинутую технику машинного обучения. Рассмотрим пример: пользователь вводит свой пол в социальной сети неправильно, и получается, либо мы имеем неизвестный пол или какой-нибудь пол по умолчанию, что тоже плохо. Здесь кат. Читать полностью »

Отчет с Moscow Data Science Meetup 31 мая - 1

31 мая Moscow Data Science Meetup собрал в нашем офисе более 200 участников. На встрече мы поговорили о градиентном бустинге, бейзлайне на ConvAI.io и разобрали кейс, получивший 7-е место из 419 команд на конкурсе Dstl Satellite Imagery Feature Detection. Предлагаем вашему вниманию видеозаписи и презентации трёх докладов, представленных на встрече.

Читать полностью »

В последнее время все чаще натыкаюсь на упоминание о «Data Science» или по-нашему «Наука о данных». Не являюсь специалистом в области IT и на протяжении всей жизни не дружу с мат. анализом и статистикой, поэтому я достаточно долго проходил мимо этого вопроса и наверное, продолжал бы проходить стороной, но в какой-то момент любопытство взяло верх.

Итак Cognitive Class он же Big Data University от IBM (иногда сокращенно BDU) – портал с бесплатными курсами по тематике близкой к BIG Data и соответственно Data Science.

Хотите узнать, чему он может или не может Вас научить, тогда милости прошу под кат.

Ловись Data большая и маленькая! (Краткий обзор курсов по Data Science от Cognitive Class) - 1Читать полностью »

У data scientist-ов сотни распределений вероятности на любой вкус. С чего начать?

Data science, чем бы она там не была – та ещё штука. От какого-нибудь гуру на ваших сходках или хакатонах можно услышать:«Data scientist разбирается в статистике лучше, чем любой программист». Прикладные математики так мстят за то, что статистика уже не так на слуху, как в золотые 20е. У них даже по этому поводу есть своя несмешная диаграмма Венна. И вот, значит, внезапно вы, программист, оказываетесь совершенно не у дел в беседе о доверительных интервалах, вместо того, чтобы привычно ворчать на аналитиков, которые никогда не слышали о проекте Apache Bikeshed, чтобы распределённо форматировать комментарии. Для такой ситуации, чтобы быть в струе и снова стать душой компании – вам нужен экспресс-курс по статистике. Может, не достаточно глубокий, чтобы вы всё понимали, но вполне достаточный, чтобы так могло показаться на первый взгляд.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js