Рубрика «data science» - 3

На днях ученые из MIT показали альтернативу многослойному перцептрону (MLP). MLP с самого момента изобретения глубокого обучения лежит в основе всех нейросетей, какими мы их знаем сегодня. На его идее в том числе построены большие языковые модели и системы компьютерного зрения.

Однако теперь все может измениться. В KAN (Kolmogorov-Arnold Networks) исследователи реализовали перемещение функций активации с нейронов на ребра нейросети, и такой подход показал блестящие результаты.

Читать полностью »
Как я случайно сэкономил компании полмиллиона долларов - 1

Разработчик под ником Ludic*, автор технического блога Ludicity, сэкономил своей компании полмиллиона долларов за пять минут. Это больше, чем он заработал для работодателей за всю его карьеру, поскольку сфера деятельности, о которой далее пойдёт речь, — обман. Он всего лишь нажал на пять кнопок.

Читать полностью »

Информационная служба Хабра посетила конференцию KuberConf’ 2023, посвящённую Kubernetes® от компании Yandex Cloud. Эта конференция — узкоспециализированное мероприятие для людей, работающих с Kubernetes®, имеющих отношение к созданию сервисов и решению бизнес-задач с его помощью в финтехе, e-commerce, HoReCa и так далее. Интересно, что сначала билеты на это мероприятие раздавали в telegram-группе Kubernetes®-сообщества и только потом была открыта регистрация на него, офлайн и онлайн. Я вскочил в последний вагон уходящего поезда.

Читать полностью »
Решение задачи определения RUL трансформаторов с помощью машинного обучения на python - 1

Дисклеймер:Читать полностью »

«Midjourney на коленке». Как развернуть нейросеть в облаке за 5 минут, или начало работы с Diffusers - 1

Построить свою конвейерную ленту по разработке нейронок не так сложно. Нужен «всего лишь» сервер с GPU и настроенное окружение с библиотекой Diffusers. Если вам интересно, что это такое, как создать свою «Midjourney на коленке» и генерировать вайф в режиме 24/7, добро пожаловать под кат!
Читать полностью »

Полезные материалы по Data Science и машинному обучению, которые помогут пройти сквозь джунгли из терминов - 1

Привет! Меня зовут Ефим, я MLOps-инженер в Selectel. В прошлом был автоматизатором, ML-инженером, дата-аналитиком и дата-инженером — и уже несколько лет падаю в пропасть машинного обучения и Data Science. Это буквально необъятная сфера, в которой почти нет ориентиров. Основная проблема в том, что разделов математики довольно много и все они, на первый взгляд, нужны в том же машинном обучении.

В этой статье делюсь полезными материалами, которые помогут найти и заполнить теоретические и практические проблемы и основательно подойти к своему профессиональному развитию. Добро пожаловать под кат!
Читать полностью »

«Я тебя по IP вычислю!» – помните такую угрозу из интернета времен нулевых годов? Мы в Big Data МТС решили выяснить, можно ли составить хотя бы приблизительное представление о человеке, обладая информацией о сайтах, которые он посещает. Для этого мы сгенерировали полусинтетические данные, чтобы понять, насколько смелыми можно быть в этих ваших интернетах.

ML-задача на 30 минут: гадаем по cookie - 1Читать полностью »

ChatGPT пройдёт собеседование по Data Science вместо вас - 1


Привет, чемпион!

Возможно, ты сейчас готовишься к собеседованию в какую-нибудь IT-компанию. Скорее всего, тебе будут задавать технические вопросы, поэтому тебе приходится готовиться. Но, возможно, ты всё равно не сможешь ответить на все вопросы правильно. Как быть?!

А слышал ли ты про новую умную chatGPT? А что, если я тебе скажу, что больше готовиться к собеседованиям так усердно не нужно! Что?! Задаваемые тебе вопросы можно делегировать chatGPT.

В общем, нет времени объяснять, давай устроим собес для chatGPT по Data Science и узнаем, сможет ли сетка его пройти?! Всё по классике — спрашиваем вопросы по 4 секциям:

  • Программирование — Python и алгоритмы,
  • Написание SQL-запросов,
  • Data Science и статистика,
  • ML System Design.

Читать полностью »

Прощай, Data Science - 1

Это по большей мере личный пост, а не какое-то глубокое исследование. Если вам нужны какие-то выводы, то здесь вы их не найдёте. Откровенно говоря, я даже не знаю, кто его целевая аудитория (возможно «дата-саентисты, которые себя ненавидят»?).

Последние несколько лет я был дата-саентистом, но в 2022 году получил новую должность дата-инженера, и пока я ею вполне доволен.

Я по-прежнему работаю вместе с «дата-саентистами» и немного продолжаю заниматься этой сферой, но вся моя работа по «data science» заключается в руководстве и консультировании по чужой работе. Я в большей степени занимаюсь реализацией data science (MLOps) и дата-инжинирингом.

Основная причина разочарования в data science заключалась в том, что работа казалась несущественной, во многих смыслах этого слова «неважной»:

  • Работа — это непрекращающийся поток разработки, продукта и офисной политики, поэтому часто так бывает, что работа хороша настолько, насколько хорошо самое слабое звено в цепи.
  • Никто не знал, в чём заключается разница между плохой и хорошей работой в data science, да никого это и не волновало. Это значит, что вы можете быть абсолютным неудачником или гением в ней, но в любом случае получите примерно одинаковое признание.
  • Работа часто приносила очень малую пользу бизнесу (часто компенсируя некомпетентность выше по цепочке управления).
  • Когда польза от работы превышала затраты на оплату труда, часто это не давало внутренней отдачи (например, настройка параметра, чтобы бизнес зарабатывал больше денег).

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js