Рубрика «data science» - 14

Решил поделиться, да бы и самому не забывать, как можно использовать простые статистические инструменты для анализа данных. В качестве примера использовался анонимный опрос относительно зарплат, стажа и позиций украинских программистов за 2014 и 2019 год. (1)

Этапы анализа

  • Препроцессинг данных и предварительный анализ (кому интересно код тут)
  • Графическое представление данных. Функция плотности распределения.
  • Формулируем нулевую гипотезу (H0) (2)
  • Выбираем метрику для анализа
  • Используем метод bootstraping для формирования нового массива данных
  • Рассчитываем p-value (3) для подтверждения или опровержения гипотезы

Препроцессинг данных

После некоторых манипуляций (код тут), приводим данные в следующий вид:

# Строка здесь это отдельный результат опроса, колонки переменные.

display(data_14_1.head(), data_19_1.head())
print('Всего опрошеных програмистов: n 
      {} чел. в 14 году и {} в 19 году'.format(len(data_14_1), len(data_19_1)))

Расчет нулевой гипотезы, на примере анализа зарплат украинских программистов - 1
Читать полностью »

Всем привет. Считанные дни остаются до старта курса «Machine Learning». В преддверии начала занятий мы подготовили полезный перевод, который будет интересен как нашим студентам, так и всем читателям блога. И сегодня делимся с вами завершающей частью данного перевода.

Интерпретируемая модель машинного обучения. Часть 2 - 1


Partial Dependence Plots

Partial Dependence Plots (графики частичной зависимости или же PDP, PD-графики) показывают незначительное влияние одного или двух признаков на прогнозируемый результат модели машинного обучения ( J. H. Friedman 2001 ). PDP может показать связь между целью и выбранными признаками с помощью 1D или 2D графиков.Читать полностью »

Перед вами перевод статьи Genevieve Hayes, Data Scientist с 15-летним опытом работы. Автор рассказывает о том, какие навыки стоит развивать, чтобы значительно увеличить шансы найти работу в Data Science. Чтобы определить эти навыки, она проанализировала 100 вакансий, размещенных работодателями из Австралии, Канады, Великобритании и США.

Шесть навыков, которые выведут вашу карьеру в Data Science на новый уровень - 1Читать полностью »

image

31 августа 2019г. Mail.ru Group и сообщество Open Data Science приглашают на Moscow Data Science Major. Это как Data Fest, только мини. Событие состоит из 8 тематических блоков докладов, 1 ML-тренировки и 8 часов ударной порции нетворкинга и знакомств. Знакомьтесь с программой и регистрируйтесь! Вход на событие бесплатный, по одобренной регистрации. Регистрация закрывается в 29 августа в 12:00.
Читать полностью »

Хороший инструмент + наличие навыков работы с ним, что достигается путем практики, позволяет легко и элегантно решать множество различных «как бы» нетипичных задач. Ниже пара подобных примеров. Уверен, что многие могут этот список расширить.

Является продолжением предыдущих публикаций.Читать полностью »

Нынешнее образование в школе все более и более редуцируется. А в оставшейся части акцент все более и более ставится на внешний эффект. «Проектная работа», презентации, вау-эффекты и пр. мишура. Причем зачастую непонятно, кому раздают все эти упражнения — ребенку или родителям? Следствием всего этого является необходимость дополнительных занятий в различных кружках, в рамках школы или же альтернативно, если есть цель дать ребенку полноценное образование.

В случае с математикой или физикой можно попытаться поймать двух зайцев (ну или зайца и зайчонка). Совместить решение задач из доп. занятий (школьная программа для этого не пригодна) с параллельным воспитанием культуры работы с данными и обучению алгоритмическим подходам. Речь идет не про чат-ботов в три строки, а о применении компьютера в рамках изначальной цели — проведение вычислений, проведение численных экспериментов, моделировании и выявлению скрытых зависимостей, на основании которых можно строить новые гипотезы.

Сразу отмечу, что тема будет интересна далеко не всем. Кому это неактуально — проходите мимо. У кого будут доп. идеи, было бы интересно тоже ознакомиться. Далее будет ряд задачек, которые были позаимствованы с курсов «Меташколы», математика 3-ий класс. Естественно, что сначала задача решается логическими рассуждениями, потом обсуждается способ решения с применением компьютера. В качестве инструмента использовался R.

Является продолжением предыдущих публикаций.Читать полностью »

Всем привет. Делимся переводом заключительной части статьи, подготовленной специально для студентов курса «Data Engineer». С первой частью можно ознакомиться тут.

Apache Beam и DataFlow для конвейеров реального времени

Создаем конвейер потоковой обработки данных. Часть 2 - 1

Настройка Google Cloud

Примечание: Для запуска конвейера и публикации данных пользовательского лога я использовал Google Cloud Shell, поскольку у меня возникли проблемы с запуском конвейера на Python 3. Google Cloud Shell использует Python 2, который лучше согласуется с Apache Beam.

Чтобы запустить конвейер, нам нужно немного покопаться в настройках. Тем из вас, кто раньше не пользовался GCP, необходимо выполнить следующие 6 шагов, приведенных на этой странице.Читать полностью »

Параллельные или распределенные вычисления — вещь сама по себе весьма нетривиальная. И среда разработки должна поддерживать, и DS специалист должен обладать навыками проведения параллельных вычислений, да и задача должна быть приведена к разделяемому на части виду, если таковой существует. Но при грамотном подходе можно весьма ускорить решение задачи однопоточным R, если у вас под руками есть хотя бы многоядерный процессор (а он есть сейчас почти у всех), с поправкой на теоретическую границу ускорения, определяемую законом Амдала. Однако, в ряде случаев даже его можно обойти.

Является продолжением предыдущих публикаций.Читать полностью »

Вот уже «тысячу лет» ничего не писал, но вдруг неожиданно появился повод сдуть пыль с мини-цикла публикаций по «обучению Data Science с нуля». В контекстной рекламе одной из соцсетей, а также на любимом «Хабре», я наткнулся на информацию о курсе «Старт в Data Science». Стоил он сущие копейки, описание курса было красочное и многообещающее. «Почему бы не восстановить, запылившиеся от ненадобности навыки пройдя очередной курс?» — подумал я. Также свою роль сыграло любопытство, давно хотелось посмотреть, как устроена организация обучения у этой конторы.

Сразу предупрежу, я никак не аффилирован с разработками курса или их конкурентами. Весь материал статьи — мое субъективное оценочное суждение с легким налетом иронии.
Итак, вы все еще не знаете куда стоит вложить свои кровные 990 рублей? Тогда милости прошу под кат.

«Как ставить сети на начинающих аналитиков» или обзор на онлайн курс «Старт в Data Science» - 1
Читать полностью »

Перевод подготовлен для студентов курса «Прикладная аналитика на R».

Иерархическая кластеризация категориальных данных в R - 1


Это была моя первая попытка выполнить кластеризацию клиентов на основе реальных данных, и она дала мне ценный опыт. В Интернете есть множество статей о кластеризации с использованием численных переменных, однако найти решения для категориальных данных, работа с которыми несколько сложнее, оказалось не так просто. Методы кластеризации категориальных данных еще только разрабатываются, и в другом посте я собираюсь попробовать еще один.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js