Рубрика «data science» - 10

Создать мощный курс Machine Learning: миссия выполнена - 1


У нас было 2 неудачных запуска, 169 студентов, 8 сердитых отзывов, 3 смены названий, слишком много теории и мало реальной практики. Не то чтобы это было полным провалом, но если начал обучать Data Science, надо сделать это идеально. Сегодня вы услышите историю о том, как мы развивали в OTUS направление анализа данных и какие на этом пути допустили, а потом исправили ошибки.


Читать полностью »

Каждый активный абонент в среднем получает более четырех нежелательных звонков в неделю — это реклама, предложения банков, иногда просто мошенничество. Большинство клиентов негативно реагируют на такого рода звонки. Для решения этой проблемы мы разработали услугу “Блокировка спам-звонков”, подключив которую, пользователь перестает получать нежелательные звонки, а в конце каждого дня система оповещает абонента о вызовах, которые были заблокированы. В этой статье data scientist’ы МТС Анна Рожкова (@RogotulkA) и Ольга Герасимова(@ynonaolga) расскажут как разработали алгоритм, отличающий номера спамеров от остальной абонентской базы.

Спам, спам, спам… - 1

Читать полностью »

Существующее определение Null в Data Science сильно ограничено. Приложив немножко усилий? мы значительно улучшим обработку данных, ранее попадаемых в Null.

Читать полностью »

Всем привет. С некоторым запозданием я решил опубликовать эту статью. Каждый год я стараюсь подвести итоги произошедшего в области обработки естественного языка (natural language processing). Не стал исключением и этот год.

BERTs, BERTs are everywhere

Начнем по порядку. Если вы не уехали в глухую Сибирскую тайгу или отпуск на Гоа на последние полтора года, то вы наверняка слышали слово BERT. Появившись в самом конце 2018-ого за прошедшее время эта модель завоевала такую популярность, что в самый раз будет вот такая картинка:

Natural Language Processing. Итоги 2019 и тренды на 2020 - 1
Читать полностью »

Дмитрий Казаков, Data Analytics Team Lead в Kolesa Group, делится инсайтами из первого казахстанского опроса специалистов по работе с данными.

«Да, они существуют!» Чем занимаются и сколько зарабатывают Data Science-специалисты в Казахстане? - 1
На фото: Дмитрий Казаков

Помните популярную фразу о том, что Big Data больше всего напоминает подростковый секс – все о нем говорят, но никто не знает, есть ли он на самом деле. То же самое можно было сказать и о рынке специалистов по работе с данными (в Казахстане) – хайп есть, а кто за ним стоит (и есть ли там вообще хоть кто-то), не было до конца понятно – ни эйчарам, ни менеджерам, ни самим дата-сайентистам.

Мы провели исследование, в рамках которого опросили более 300 специалистов об их зарплатах, функциях, скиллах, инструментах и много еще о чем.

Спойлер: да, они точно существуют, но все не так однозначно.

Приятный инсайт. Во-первых, специалистов по работе с данными больше чем мы ожидали. Нам удалось опросить 300 человек, среди которых есть не только product-, marketing- и BI-аналитики, но и ML-, DWH-инженеры, что особенно порадовало. В самой большой группе оказались все те, кто называет себя дата-сайентистами – это 36% опрошенных. Покрывает это запрос рынка или нет, сказать сложно, потому что сам рынок только формируется. Читать полностью »

Статья является кратким обзором о сертификации по программе IBM Data Science Professional Certificate.

Будучи новичком в Python, мне пришлось столкнуться с реализацией задач:

  • Загрузка и парсинг HTML таблиц
  • Очистка загруженных данных
  • Поиск географических координат по адресу объекта
  • Загрузка и обработка GEOJSON
  • Построение интерактивных тепловых карт (heat map)
  • Построение интерактивных фоновых картограмм (choropleth map)
  • Преобразование географических координат между сферической WGS84 и картезианский системой координат UTM
  • Представление пространственных географических объектов в виде гексагональная сетки окружностей
  • Поиск географических объектов, расположенных на определенном расстоянии от точки
  • Привязка географических объектов к полигонам сложной формы на поверхности
  • Описательные статистический анализ
  • Анализ категорийных переменных и визуализация результатов
  • Корреляционный анализ и визуализация результатов
  • Сегментация с использованием k-Mean кластеризации и elbow метода
  • Анализ и визуализация кластеров

Читать полностью »

Туториал по Uplift моделированию. Часть 2 - 1

В первой части мы познакомились с uplift моделированием и узнали, что метод позволяет выбирать оптимальную стратегию коммуникации с клиентом, а также разобрали особенности сбора данных для обучения модели и несколько базовых алгоритмов. Однако эти подходы не позволяли оптимизировать uplift напрямую. Поэтому в этой части разберем более сложные, но не менее интересные подходы.
Читать полностью »

Предыдущий выпуск

Экзоскелеты; бионические протезы; промышленные роботы; исследование автоматических рекоммендаций Ютуба; создание моделей машинного обучения в браузере с помощью MediaPipe; виртуальная клавиатура для смартфонов; 5G; еще раз о сильном и слабом ИИ.

Читать полностью »

Туториал по uplift моделированию. Часть 1 - 1


Команда Big Data МТС активно извлекает знания из имеющихся данных и решает большое количество задач для бизнеса. Один из типов задач машинного обучения, с которыми мы сталкиваемся – это задачи моделирования uplift. С помощью этого подхода оценивается эффект от коммуникации с клиентами и выбирается группа, которая наиболее подвержена влиянию.

Такой класс задач прост в реализации, но не получил большого распространения в литературе про машинное обучение. Небольшой цикл статей, подготовленный Ириной Елисовой (iraelisova) и Максимом Шевченко (maks-sh), можно рассматривать как руководство к решению таких задач. В рамках него мы познакомимся с uplift моделями, рассмотрим, чем они отличаются от других подходов, и разберем их реализации.
Читать полностью »

image

Этим летом библиотека OpenCV отмечает свой двадцатый юбилей. OpenCV — самая большая библиотека компьютерного зрения в мире. Она используется чуть ли не в каждом мобильном телефоне, планшете и камере, не говоря уже о настольных системах и серверах. SourceForge рапортует о 20 миллионах скачиваний релизных версий библиотеки, и это число продолжает расти.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js