Привет. Закончился курс по нейронным сетям. Хороший курс, но мало практики. Так что в этом посте мы рассмотрим, напишем и протестим ограниченную машину Больцмана — стохастическую, генеративную модель нейронной сети. Обучим ее, используя алгоритм Contrastive Divergence (CD-k), разработанный профессором Джеффри Хинтоном, который кстати и ведет тот курс. Тестировать мы будем на наборе печатных английских букв. В следующем посте будет рассмотрен один из недостатков алгоритма обратного распространения ошибки, и способ первоначальной инициализации весов с помощью машины Больцмана. Кто не боится формулок и простыней текста, прошу под кат.
Рубрика «data mining» - 99
Реализация Restricted Boltzmann machine на c#
2012-12-08 в 14:24, admin, рубрики: .net, data mining, анализ данных, искусственный интеллект, машина Больцмана, нейронные сети, обучение без учителя, метки: c++, анализ данных, машина Больцмана, нейронные сети, обучение без учителяКак работают экспертные системы прогнозирования продаж или сколько грузить планшетов в граммах
2012-12-06 в 6:13, admin, рубрики: data mining, анализ данных, Блог компании КРОК, логистика, логистические цепочки, недозаказ, перезаказ, прогнозирование спроса, ритейл, управление проектами, метки: анализ данных, логистика, логистические цепочки, недозаказ, перезаказ, прогнозирование спроса, ритейл
Я уже писал краткий обзор того, как IT-решения помогают оптимизировать цепочки поставок. Теперь я расскажу о том, как такие системы внедряются в реальности в России и что это даёт. К сожалению, я не могу называть конкретных заказчиков, поэтому мы сейчас будем торговать абстрактными телефонами и планшетами и сталкиваться с теми же проблемами.
Итак, представьте, два года назад вы решили торговать телефонами и даже открыли интернет-магазин. Поначалу всё было просто: заказов довольно мало, и всё можно посчитать на бумажке. Через два месяца стало понятно, что магазин работает стабильно, и заниматься поставками надо серьёзно — ведь если юзер не увидит в наличии свой любимый мими-планшет с минимальной наценкой, он просто купит его у другого магазина, и вы лишитесь шанса продать не только планшет, но и дорогущие обложки, переходники и так далее.
Соответственно, задач у вас сейчас три:
- Поддерживать ассортимент продукции по основной линейке;
- Понимать, сколько будет продаж, чтобы планировать закупку аксессуаров;
- Держать на контроле все хиты и новинки, чтобы всегда продавать ходовые товары и «снимать пену» на запусках новых девайсов.
Как поисковые подсказки каждый день экономят человеческую жизнь
2012-12-03 в 8:12, admin, рубрики: data mining, Блог компании Яндекс, поиск, Поисковые машины и технологии, поисковые подсказки, поисковые системы, яндекс, метки: поиск, поисковые подсказки, поисковые системы, яндексПоисковые подсказки существуют в Яндексе уже больше четырёх лет. На профессиональном сленге мы называем их саджестом. Первоначально он формировался только на основе частоты тех или иных запросов. Со временем мы научили подсказки учитывать, из какого региона задаётся вопрос, связан ли он с каким-то недавним событием, можно ли показать пользователю сразу адрес сайта и какого. Ко всему прочему мы первыми из существующих поисковых систем внедрили технологию, которая позволяет саджесту учитывать предыдущий запрос пользователя и показывать ему контекстную подсказку. Теперь поисковые подсказки вступают с вами в диалог и меняются в зависимости от того, что вы только что искали.
Задача Яндекса — отвечать на вопросы, как заданные так и нет. Поиск — про заданные вопросы, но пользователю можно помочь их сформулировать. Читать полностью »
Введение в R-project
2012-11-27 в 6:01, admin, рубрики: data mining, R-project, метки_никто_не_читает, статистика, метки: R-project, метки_никто_не_читает, статистика Во всем Хабре сыскалась лишь пара статей на вышеуказанную тему. А тема благодатная. Да и в минувшую среду как раз окончился курс "Introduction to Computational Finance and Financial Econometrics". По мотивам его пятой недели «Descriptive statistics» и появился этот пост. Причастившимся будет неинтересно, а желающих познакомиться с базовыми приемами анализа данных при помощи R — прошу под хабракат.
Читать полностью »
Прогресс в разработке нейросетей для машинного обучения
2012-11-25 в 0:16, admin, рубрики: data mining, deep learning, Алгоритмы, искусственный интеллект, машинное обучение, нейросети, обратное распространение ошибки, метки: deep learning, искусственный интеллект, машинное обучение, нейросети, обратное распространение ошибки В пятничном номере NY Times опубликована статья о значительных успехах, который демонстрируют в последние годы разработчики алгоритмов для самообучаемых нейросетей. В глубоких структурах есть несколько скрытых слоёв, которые традиционно тяжело было обучать. Но всё изменилось с использованием стека из машин Больцмана (RBM) для предварительной тренировки. После этого можно удобно перенастраивать веса, применяя метод обратного распространения ошибки (backpropagation). Плюс появление быстрых GPU — всё это привело к существенному прогрессу, который мы наблюдаем в последние годы.
Сами разработчики не делают громких заявлений, чтобы не поднимать ажотаж вокруг нейросетей — такой, как в 1960-е годы поднялся вокруг кибернетики. Тем не менее, можно говорить о возрождении интереса к исследованиям в этой области.
Читать полностью »
Text Mining Framework (Java)
2012-11-10 в 20:50, admin, рубрики: artificial intelligence, data mining, java, text mining, Семантическая Сеть, метки: artificial intelligence, data mining, java, text mining, семантическая сетьЧто это и для кого (вместо вступления)
В данной статье я бы хотел рассказать о небольших результатах своей научной деятельности в сфере Text Mining. Этими самыми «результатами» стал небольшой FrameWork, который, пока еще, и до либы то не очень дотягивает, но мы растем =). Данный проект — реализация на практике некоторых, разработанных мною, теоретических положений. Как следствие этого я представляю возможности, которыми он может потенциально обладать в конце внедрения всех идей. Названо сее творение: «Text Mining FrameWork»(TextMF). Давайте в кратце рассмотрим, что именно будет позволять TextMF в своей первой финальной версии и что работает уже сейчас.
Читать полностью »
Применение Data mining в продажах
2012-11-09 в 12:49, admin, рубрики: data mining, кластеризация, сегментация, метки: data mining, кластеризация, сегментация Существует множество компаний, которые продают товары клиентам или оказывают какие-то услуги. Часто продавцы интуитивно принимают решения, какой именно товар из всей существующей линейки лучше подходит клиенту. Также интуитивно определяется, какой массив клиентов более интересен для компании, а для каких клиентов продажа и дальнейшее обслуживание будут слишком затратные и невыгодные.
Для технологичного понимания всех этих вопросов хорошо подходит анализ информации с помощью технологии Data mining. Автоматизируя процесс сегментации клиентов с помощью кластеризации Data mining, компания может найти ответы на множество вопросов.
Рассмотрим вариант, когда компания занимается продажей товаров или услуг и дальнейшим послепродажным обслуживанием. Соответственно у компании есть потенциальные клиенты, которым осуществляются продажи. Также есть клиенты, которые обслуживаются или были ранее на обслуживании, т.е. которым ранее уже продавали. Для простоты будем их называть обслуживаемыми клиентами.
Кратко опишу цель и идею. Для анализа необходимо взять несколько показателей (15-20), которые есть у потенциальных и обслуживаемых клиентов одновременно. Также надо выбрать 2-3 показателя, которые есть только у обслуживаемых клиентов – это целевые показатели. Провести анализ кластеризации Data mining на массиве обслуживаемых клиентов. На выходе получим несколько кластеров со своими характеристиками. Далее кластеры группируем в сегменты по целевым показателям и даем какие-то понятные для маркетологов определения. Полученную модель анализируем, и полученные кластеры проецируем на потенциальных клиентов. На выходе получаем просегментированных потенциальных клиентов. На основании полученных сегментов можно выстроить стратегию и методологию продаж для каждого сегмента клиентов.
Рассмотрим подробнее данную методику и последовательность шагов для достижения результата.
Читать полностью »
Локальная скорость обучения весов нейронов в алгоритме обратного распространения ошибки
2012-11-02 в 15:38, admin, рубрики: data mining, Алгоритмы, анализ данных, искусственный интеллект, нейронные сети, обратное распространение ошибки, обучение, метки: data mining, анализ данных, искусственный интеллект, нейронные сети, обратное распространение ошибки, обучение Привет, в одной из последних лекций по нейронным сетям на курсере речь шла о том, как можно улучшить сходимость алгоритма обратного распространения ошибки в общем, и в частности рассмотрели модель, когда каждый вес нейрона имеет свою собственную скорость обучения (neuron local gain). Я давно хотел реализовать какой нибудь алгоритм, который бы автоматически настраивал бы скорость обучения сети, но все лень руки не доходили, а тут вдруг такой простой и незамысловатый способ. В этой небольшой статье я расскажу про эту модель и приведу несколько примеров того, когда эта модель может быть полезна.
Нейронная сеть с SoftMax слоем на c#
2012-10-19 в 12:57, admin, рубрики: .net, data mining, искусственный интеллект, нейронная сеть, обратное распространение ошибки, метки: .net, c++, искусственный интеллект, нейронная сеть, обратное распространение ошибкиПривет, в прошлой статье я рассказал про алгоритм обратного распространения ошибки и привел реализацию, не зависящую от функции ошибки и от функции активации нейрона. Было показано несколько простых примеров подмены этих самых параметров: минимизация квадрата Евклидова расстояния и логарифмического правдоподобия для сигмоидной функции и гиперболического тангенса. Данный пост будет логическим продолжение прошлого, в котором я рассмотрю немного нестандартный пример, а именно функцию активации Softmax для минимизации перекрестной энтропии. Эта модель актуальна при задаче классификации, когда необходимо получить на выходе нейросети вероятности принадлежности входного образа одному из не пересекающихся классов. Очевидно, что суммарный выход сети по всем нейронам выходного слоя должен равняться единице (так же как и для выходных образов обучающей выборки). Однако не достаточно просто нормализировать выходы, а нужно заставить сеть моделировать вероятностное распределение, и обучать ее именно этому. Кстати, сейчас на coursera.org идёт курс по нейросетям, именно он помог углубиться в понимание софтмакса, иначе я продолжал бы использовать сторонние реализации.
Алгоритм обратного распространения ошибки с регуляризацией на c#
2012-10-15 в 11:39, admin, рубрики: .net, data mining, алгоритм, искусственный интеллект, нейронные сети, обратное распространение ошибки, регуляризация, метки: c++, алгоритм, искусственный интеллект, нейронные сети, обратное распространение ошибки, регуляризацияПривет. Я хочу продолжить тему реализации методов машинного обучения на c#, и в этой статье я расскажу про алгоритм обратного распространения ошибки для обучения нейронной сети прямого распространения, а также приведу его реализацию на языке C#. Особенность данной реализации в том, что реализация алгоритма абстрагирована от реализаций целевой функции (той, которую нейросеть пытается минимизировать) и функции активации нейронов. В итоге получится некий конструктор, с помощью которого можно поиграться с различными параметрами сети и алгоритма обучения, посмотреть и сравнить результат. Предполагается, что вы уже знакомы с тем, что такое искусственная нейросеть (если нет, то настоятельно рекомендую для начала изучить википедию или одну из подобных статей). Интересно? Лезем под кат.