Рубрика «data mining» - 98

Суперкомпьютер IBM Watson выучил уличный жаргон: пришлось чистить ему память

Разработчики суперкомпьютера IBM Watson сделали большую ошибку, когда закачали в его память словарь уличного жаргона с сайта Urban Dictionary. IBM Watson обучен распознавать смысл предложений/вопросов и отвечать на них, используя усвоенные массивы неструктурированных данных (data mining). Благодаря этому компьютер выиграл у чемпионов телевикторины «Своя игра» (Jeopardy) в 2011 году, после чего начал изучать медицинские справочники с целью диагностировать болезни по симптоматике, как доктор Хаус.

Разработчики думали, что информация о дополнительных смыслах слов улучшит искусственный интеллект, поможет ему лучше понимать людей. Они ошиблись. Уличный жаргон оказался исключительно вреден суперкомпьютеру. Однажды он даже ответил на вопрос неприличным словом “Bullshit”.
Читать полностью »

Визуализация статистики использования компьютера с R
Думаю, многим интересно (хотя бы из любопытства), как именно они используют свой компьютер: самые нажимаемые кнопки, пройденное мышью расстояние, среднее время работы и другую информацию. В этой статье я расскажу один из вариантов того, как можно собрать такую информацию и затем представить её в виде интерактивных графиков. Все описанные действия производились на ноутбуке с ОС Debian Wheezy, Python 2.7.3, R 2.15.
image
Читать полностью »

О чем статья

В задачах исследования больших объемов данных есть множество тонкостей и подводных камней. Особенно для тех, кто только начинает исследовать скрытые зависимости и внутренние связи внутри массивов информации. Если человек делает это самостоятельно, то дополнительной трудностью становится выбор примеров, на которых можно учиться и поиск сообщества для обмена мнениями и оценки своих успехов. Пример не должен быть слишком сложным, но в тоже время должен покрывать основные проблемы. озникающие при решении задач приближенных к реальности, так чтобы задача не воспринималась примерно вот так:
Data Mining: Первичная обработка данных при помощи СУБД. Часть 1
С этой точки зрения, очень интересным будет ресурс Kaggle[1], который превращает исследование данных в спорт. Там проводят соревнования по анализу данных. Некоторые соревнования — с обучающими материалами и предназначены для начинающих. Вот именно обучению анализу данных, на примере решения одной из обучающих задач, и будет посвящён цикл статей. Первая статья будет о подготовке данных и использованию СУБД для этой цели. Собственно, о том, как и с чего начать. Предполагается что читатель понимает SQL.
Читать полностью »

в 16:42, , рубрики: data mining, метки: ,

Время от времени я езжу на работу на велосипеде. Иногда на улице идёт дождь, погода «не велосипедная», и тогда возникает дилемма: немного подождать, пока он закончится, либо вообще ехать на автомобиле. Бывает и так, что с утра погода хорошая, а вечером начинает идти дождь и хочется найти «окно» для того, чтобы вернуться домой сухим. Пару раз доходило до смешного – с утра светит солнце, я выезжаю, минут через пять начинается неслабый дождик, а ещё через несколько минут он заканчивается, снова светит солнце, а я вхожу в офис мокрый до трусов.

Таким образом нужен сервис с краткосрочным прогнозом погоды – в пределах пары часов. В основном погодные сервисы предлагают прогноз на несколько дней (при этом качество прогноза так себе), а вот удобного и простенького краткосрочного прогноза я не видел. Хотя казалось бы – что может быть проще – карты осадков в каждый момент времени имеются, и проанализировав историю за последнюю пару часов можно довольно достоверно рассчитать, что произойдет в следующие час-два.

Под катом мы сделаем следующее – программно загрузим карты дождя с одного из сервисов и посмотрим, что будет происходить в окрестностях определённой точки, сохранив результаты в dropbox. Нехитрое пятничное упражнение исполним, разумеется, в LabVIEW.
Читать полностью »

Задача кластеризации – частный случай задачи обучения без учителя, которая сводится к разбиению имеющегося множества объектов данных на подмножества таким образом, что элементы одного подмножества существенно отличались по некоторому набору свойств от элементов всех других подмножеств. Объект данных обычно рассматривается как точка в многомерном метрическом пространстве, каждому измерению которого соответствует некоторое свойство (атрибут) объекта, а метрика – есть функция от значений данных свойств. От типов измерений этого пространства, которые могут быть как числовыми, так и категориальными, зависит выбор алгоритма кластеризации данных и используемая метрика. Этот выбор продиктован различиями в природе разных типов атрибутов.

В этой статье приведён краткий обзор методов кластеризации числовых пространств данных. Она будет полезна тем, кто только начинает изучать Data Mining и кластерный анализ и поможет сориентироваться в многообразии современных алгоритмов кластеризации и получить о них общее представление. Статья не претендует на полноту изложения материала, напротив, описание алгоритмов в ней максимально упрощено. Для более подробного изучения того или иного алгоритма рекомендуется использовать научную работу, в которой он был представлен (см. список литературы в конце статьи).
Читать полностью »

Это логическое продолжение статьи "Построение графа социальной сети с помощью Drupal и Feeds"

Я в составе группы занимался собором информации из блогосферы. Задачей было оценить напряженность, активность политических дискуссий в период избирательной кампании выборов в Государственную Думу. Забегая вперед скажу, что исследование позволило выдвинуть гипотезы, которые позже подтвердились. В частности, по результатам, о которых вы прочтете ниже можно понять, кто же будет выходить на площади и выводить за собой людей. И главное, за кем они пойдут.
Читать полностью »

Введение

Сейчас практически невозможно представить себе мир без параллельных вычислений. Параллелят все и вся, даже у мобильных телефонов теперь несколько ядер, а значит… ну вы понимаете. Но давайте поговорим не о мобильных приложениях, а о более полезных и интересных вещах. О машинном обучении. Тема тоже модная, разрекламированная, про машинное обучение слышали даже домохозяйки и только ленивый еще не трогал это руками. Для машинного обучения, и если быть более точным, для статистических расчетов есть множество разных фреймворков, на мой вкус лучший из них – R (да простят меня поклонники Octave). И речь пойдет именно о нем.

Disclaimer:
я не претендую на особую строгость изложения, моя задача донести до читателей общую мысль.
Читать полностью »

При решении задач с применением методов машинного обучения, как правило, мы выбираем наиболее подходящий алгоритм в контексте задачи, а также способ настройки его параметров.

Давайте рассмотрим несколько иной подход: вместо того, чтобы самостоятельно выбирать алгоритм, разработаем программу, которая способна автоматически генерировать алгоритмы для решения задач.

Читать полностью »

Привет. Закончился курс по нейронным сетям. Хороший курс, но мало практики. Так что в этом посте мы рассмотрим, напишем и протестим ограниченную машину Больцманастохастическую, генеративную модель нейронной сети. Обучим ее, используя алгоритм Contrastive Divergence (CD-k), разработанный профессором Джеффри Хинтоном, который кстати и ведет тот курс. Тестировать мы будем на наборе печатных английских букв. В следующем посте будет рассмотрен один из недостатков алгоритма обратного распространения ошибки, и способ первоначальной инициализации весов с помощью машины Больцмана. Кто не боится формулок и простыней текста, прошу под кат.

Читать полностью »

Как работают экспертные системы прогнозирования продаж или сколько грузить планшетов в граммах

Я уже писал краткий обзор того, как IT-решения помогают оптимизировать цепочки поставок. Теперь я расскажу о том, как такие системы внедряются в реальности в России и что это даёт. К сожалению, я не могу называть конкретных заказчиков, поэтому мы сейчас будем торговать абстрактными телефонами и планшетами и сталкиваться с теми же проблемами.

Итак, представьте, два года назад вы решили торговать телефонами и даже открыли интернет-магазин. Поначалу всё было просто: заказов довольно мало, и всё можно посчитать на бумажке. Через два месяца стало понятно, что магазин работает стабильно, и заниматься поставками надо серьёзно — ведь если юзер не увидит в наличии свой любимый мими-планшет с минимальной наценкой, он просто купит его у другого магазина, и вы лишитесь шанса продать не только планшет, но и дорогущие обложки, переходники и так далее.

Соответственно, задач у вас сейчас три:

  • Поддерживать ассортимент продукции по основной линейке;
  • Понимать, сколько будет продаж, чтобы планировать закупку аксессуаров;
  • Держать на контроле все хиты и новинки, чтобы всегда продавать ходовые товары и «снимать пену» на запусках новых девайсов.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js