Рубрика «data mining» - 87

Американская полиция уже несколько лет экспериментирует с автоматической обработкой статистики о компьютерных преступлениях. Например, в 2011 году в городе Санта-Крус (Калифорния) начали использовать в экспериментальном режиме программу предсказания преступлений. Там на базе статистики преступлений за последние несколько лет вычисляется частотность каждого типа преступлений в разных районах города — и соответствующим образом составляются маршруты для полицейских патрулей с указанием «горячих точек».

Полиция Чикаго составила список из 400 предполагаемых будущих преступников

Полицейский отдел Чикаго вывел дата-майнинг на новый уровень — и объединил статистику с профилированием. Например, в прошлом году местная пресса писала о том, что полиция составила список наблюдения. В него внесены около 400 граждан, которые по профилю наиболее склонны совершить преступление в ближайшем будущем.
Читать полностью »

Как-то в самом начале нового года мы решили совместить приятное с полезным: дружно отдохнуть и поработать. И пригласили сотрудников, наших студентов и экспертов из компаний EMC, Rosalind, Yota, Game|Changers провести три дня зимних каникул в домике под Петербургом.

Встреча с друзьями-единомышленниками за городом хороша, чтобы поделиться идеями, написать статью или закончить работу, до которой никак не доходили руки. Для этого мы и организовали выезд на Data Mining Camp. Решили, что будет сауна, настольные игры, контактный зоопарк и – гвоздь программы – хакатон.

На хакатоне ребята при помощи экспертов работали над тремя исследованиями: модель иерархической кластеризации признаков, модель ухода слушателей онлайн-курсов, попробовали улучшить алгоритм Gradient Boosting Machines, а также поучаствовали в международном конкурсе на платформе Kaggle. О том как это было и как ребята продолжают работать над этими идеями под катом…

Data Mining Camp: как мы вдохновились на год вперед

Читать полностью »

Facebook знает, в кого ты влюбился

Специалисты по анализу данных из компании Facebook опубликовали статистику, собранную с анонимных профилей в социальной сети. Как романтично сказано в официальном блоге, статистика показывает «формирование любви» между парами.

«В течение 100 дней перед началом отношений мы наблюдаем медленное, но стабильное увеличение количества сообщений между будущей парой», — пишет автор исследования Карлос Дьюк (Carlos Diuk). Но самое интересное происходит потом: резкое уменьшение коммуникаций в социальной сети сразу после установления отношений (и нового статуса в профиле).
Читать полностью »

Алгоритм Улучшенной Самоорганизующейся Растущей Нейронной Сети (ESOINN)

Введение

В моей предыдущей статье о методах машинного обучения без учителя был рассмотрен базовый алгоритм SOINN — алгоритм построения самоорганизующихся растущих нейронных сетей. Как было отмечено, базовая модель сети SOINN имеет ряд недостатков, не позволяющих использовать её для обучения в режиме lifetime (т.е. для обучения в процессе всего срока эксплуатации сети). К таким недостаткам относилась двухслойная структура сети, требующая при незначительных изменениях в первом слое сети переобучать второй слой полностью. Также алгоритм имел много настраиваемых параметров, что затрудняло его применение при работе с реальными данными.

В этой статье будет рассмотрен алгоритм An Enhanced Self-Organizing Incremental Neural Network, являющийся расширением базовой модели SOINN и частично решающий озвученные проблемы.
Читать полностью »

Lets fix NAs!Довольно часто встречаются неполные наборы данных, в которых некоторые переменные не определены. В языке R содержимое таких переменных задается как «Not Available» — или сокращенно NA. Соответственно, возникает вопрос, как поступать с неопределенными значениям: стоит ли их игнорировать или откорректировать каким-либо образом?
Читать полностью »

В качестве практического приложения к предыдущей статье, хочу предоставить крошечную JavaScript библиотеку для построения деревьев и леса принятия решений.

Деревья принятия решений на JavaScript

Читать полностью »

Введение

Добрый день, уважаемые читатели.
После написания предыдущего поста про анализ временных рядов на Python, я решил исправить замечания, которые были указаны в комментариях, но при их исправлении я столкнулся с рядом проблем, например при построении сезонной модели ARIMA, т.к. подобной функции а пакете statsmodels я не нашел. В итоге я решил использовать для этого функции из R, а поиски привели меня к библиотеке rpy2 которая позволяетиспользовать функции из библиотек упомянутого языка.
У многих может возникнуть вопрос «зачем это нужно?», ведь проще просто взять R и выполнить всю работу в нем. Я полность согласен с этим утверждением, но как мне кажется, если данные требуют предварительной обработки, то ее проще произвести на Python, а возможности R использовать при необходимости именно для анализа.
Кроме этого, будет показано как интегрировать результаты выдачи работы функции R в IPython Notebook.
Читать полностью »

Добрый день, уважаемые читатели.
В сегодняшней статье, я попытаюсь описать процесс анализа временных рядов с помощью python и модуля statsmodels. Данный модуль предоставляет широкий набор средств и методов для проведения статистического анализа и эконометрики. Я попытаюсь показать основные этапы анализа таких рядов, в заключении мы построим модель ARIMA.
Для примера взяты реальные данные по товарообороту одного из складских комплексов Подмосковья.
Читать полностью »

Введение

Добрый день, уважаемые читатели.
В прошлых статьях, на практических примерах, мной были показаны способы решения задач классификации (задача кредитного скоринга) и основ анализа текстовой информации (задача о паспортах). Сегодня же мне бы хотелось коснуться другого класса задач, а именно восстановления регрессии. Задачи данного класса, как правило, используются при прогнозировании.
Для примера решения задачи прогнозирования, я взял набор данных Energy efficiency из крупнейшего репозитория UCI. В качестве инструментов по традиции будем использовать Python c аналитическими пакетами pandas и scikit-learn.
Читать полностью »

Есть битовая матрица, содержащая изображение круга, квадрата или треугольника (фигуры закрашены). Изображение может быть немного искажено или содержать помехи. Задача – написать алгоритм, который по матрице выяснит, какая фигура нарисована на изображении.
Классификатор изображений
Эта простая с первого взгляда задача встретилась мне на вступительном экзамене в DMLabs. На первом занятии мы обсудили решение, а преподаватель (Александр Шлемов; он также руководил дальнейшей реализацией) показал, почему для решения лучше использовать машинное обучение.
В процессе дискуссии мы обнаружили, что наши решения делятся на два этапа: фильтрацию помех и вычисление какой-то метрики, по которой будет проходить классификация. Тут возникает проблема нахождения границ: необходимо знать, какие значения метрики могут получаться для каждой из фигур. Можно проложить эти границы вручную “на глазок”, но лучше поручить это дело математически обоснованному алгоритму. Таким образом мы подходим к использованию методов машинного обучения (Machine Learning).
Таким образом эта учебная задачка стала для меня введением в Machine Learning, и я хотел бы поделиться с вами этим опытом.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js