Рубрика «data mining» - 69

Аналитика Instagram и GAE - 1

Некоторое время назад на Хабре была опубликована статья про поиск похожих аккаунтов в Twitter'e. На комментарии автор, к сожалению, не реагировал, потому пришлось изобретать велосипед. Но чтобы не делать уж совсем то же самое, было решено искать похожие аккаунты в Instagram с помощью Google App Engine, да так, чтобы воспользоваться сервисом мог каждый. Так появился instalytics.ru*.

Читать полностью »

После непродолжительной, но весьма кровавой войны мне все-таки удалось откомпилировать и собрать TensorFlow для GPU с CUDA capability=3.0. Теперь можно погрузиться в него основательно, потому что машинное обучение с GPU — это быстро, легко и приятно, а без GPU — порой лишь огромная потеря времени.

Попробуем запрограммировать самую простейшую логистическую регрессию.
Читать полностью »

В данной работе даются элементы введения в классификацию с обучением на малых выборках — от удобной системы обозначений до специальных оценок надежности. Постоянное наращивание быстродействия вычислительных устройств и малые выборки, позволяют пренебречь значительным объемом вычислений, необходимым при получении некоторых из этих оценок.
Читать полностью »

2015 год был очень богат на события, связанные с нейросетевыми технологиями и машинным обучением. Особенно заметный прогресс показали сверточные и рекуррентные сети, подходящие для решения задач в области компьютерного зрения и распознавания речи. Многие крупные компании опубликовали на Github свои разработки, Google выпустил в свет TensorFlow, Baidu — warp-ctc. Группа ученых из Microsoft Research тоже решила присоединиться к этой инициативе, выпустив Computational Network Toolkit, набор инструментов для проектирования и тренировки сетей различного типа, которые можно использовать для распознавания образов, понимания речи, анализа текстов и многого другого. Интригующим при этом является то, что эта сеть победила в конкурсе ImageNet LSVR 2015 и является самой быстрой среди существующих конкурентов.

CNTK — нейросетевой инструментарий от Microsoft Research - 1
Читать полностью »

Школа Данных «Билайн», каникулы закончились - 1

Привет!

Надеемся, что в Новогодние праздники многие из Вас отлично отдохнули. Но, каникулы закончились. Пора вернуться к машинному обучению и анализу данных. С 25 января мы запускаем третий набор Школы Данных «Билайн».

В прошлом посте мы обещали вам более детально рассказать, чему мы учим на наших занятиях по анализу текстов. В данном посте мы данное обещание исполняем.

Кстати, если вы уже активно занимаетесь анализом и обработкой текстов и хотите попробовать себя, рекомендуем поиграться с задачей The Allen AI Science Challenge на Kaggle=) и заодно поучаствовать в DeepHack, хакатоне по анализу текстов и построению ответных систем.

Про то, чему мы учим на наших занятиях по обработке текстов дальше.
Читать полностью »

Новые инструменты (Octave и Scilab) во FlyElephant и анонс вебинаров - 1

Команда FlyElephant поздравляет всех с наступившим Новым Годом. Мы начинаем этот год с расширения списка инструментов, вебинаров и формирования сообщества вокруг проекта.

FlyElephant — это платформа, которая предоставляет ученым готовую вычислительную инфраструктуру для проведения расчетов, автоматизирует рутинные задачи и позволяет сосредоточиться на основных вопросов исследований.

Для пользователей платформы FlyElephant стали доступны Octave и Scilab, таким образом полный список поддерживаемых языков и инструментов следующий: GCC (с поддержкой OpenMP), R, Python (v2 & v3), Octave и Scilab. Для участников программы бета-тестирования стал доступен следующий инструментарий: Java (v7 & v8), Julia, OpenFOAM, GROMACS и Blender. Если Вы еще не являетесь пользователем платформы FlyElephant, то зарегистрироваться можно здесь. В честь Нового Года Вы можете пополнить свой счет на $300 введя в Личном кабинете специальный промо-код: 195708679772.
Читать полностью »

AI, BigData & HPC Digest #3 - 1

Привет!

Наша команда FlyElephant хочет поздравить всех с наступающим Новым Годом, пожелать всего самого лучшего и успешной реализации всех задуманных проектов в предстоящем году, а чтобы на выходных было что почитать, публикуем свежий номер дайджеста. Сегодня в выпуске традиционная подборка интересных ссылок на новости и материалы по направлениям: искусственный интеллект, большие данные и высокопроизводительные вычисления.

14-го января мы проведем вебинар на тему "Введение в машинное обучение", на котором поговорим об истории и основных понятиях машинного обучения. Рассмотрим популярные задачи/алгоритмы машинного обучения, а также запустим их примеры при помощи платформы FlyElephant и узнаем как возможно использовать данную платформу для решения задач искусственного интеллекта. Зарегистрироваться на вебинар можно здесь.
Читать полностью »

Сейчас уже многие используют библиотеку numpy в своих python-программах, поскольку она заметно ускоряет работу с данными и выполнение математических операций. Однако во многих случаях numpy работает в разы медленнее, чем она может… потому что использует только один процессор, хотя могла бы использовать все, что у вас есть.
Читать полностью »

Фестиваль Данных в музее Москвы, как это было - 1

Привет Хабр,

Итак, мы провели Фестиваль Данных на выставке новых технологий SMIT в Музее Москвы, о котором писали здесь.

Это первое мероприятие из серии, в которой мы собираем экспертов из разных областей бизнеса, науки и государственного управления и рассказываем про аналитику данных.

Хранение и анализ данных, которые были прерогативой узкого круга компаний и людей теперь начинают затрагивать жизнь практически всех. По этой причине мы и начали данную серию мероприятий, где мы широкой аудитории рассказываем про данные и их аналитику.
Читать полностью »

Сегодня машины без труда “связывают два слова” (1, 2), но пока не умеют гарантированно вести диалог на общие темы. Однако, уже завтра вы будете просить их правильно составить резюме и выбрать для ваших детей лучшую секцию по шахматам недалеко от дома. Хотите разобраться подробней, как в этом направлении работают ученые из Facebook, Google и др? Приходите их послушать.
Хакатон и зимняя научная школа по глубокому обучению и вопросно-ответным системам - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js