Рубрика «data mining» - 66

Школа Данных «Билайн»: весна, знания, новый курс - 1

Привет.

Итак, третий курс Школы Данных «Билайн» подходит к завершению и мы набираем четвёртый.

У нас 18 занятий, 36 часов, все основные темы машинного обучения и анализа данных, куча практики, куча домашек, два Kaggle соревнования, презентации и воркшопы от партнеров, возможность устройства в Билайн в команду BigData для лучших студентов, сокурсники из различных областей бизнеса, где применяется машинное обучение и много чего ещё.
Читать полностью »

Введение

Недавно заглянув на КиноПоиск, я обнаружила, что за долгие годы успела оставить более 1000 оценок и подумала, что было бы интересно поисследовать эти данные подробнее: менялись ли мои вкусы в кино с течением времени? есть ли годовая/недельная сезонность в активности? коррелируют ли мои оценки с рейтингом КиноПоиска, IMDb или кинокритиков?
Но прежде чем анализировать и строить красивые графики, нужно получить данные. К сожалению, многие сервисы (и КиноПоиск не исключение) не имеют публичного API, так что, приходится засучить рукава и парсить html-страницы. Именно о том, как скачать и распарсить web-cайт, я и хочу рассказать в этой статье.
В первую очередь статья предназначена для тех, кто всегда хотел разобраться с Web Scrapping, но не доходили руки или не знал с чего начать.

Off-topic: к слову, Новый Кинопоиск под капотом использует запросы, которые возвращают данные об оценках в виде JSON, так что, задача могла быть решена и другим путем.Читать полностью »

В новом выпуске «Черной археологии датамайнинга» мы немного поиграемся в шпионов. Увидим, что может узнать обычный Data Specialist на основе открытых в сети данных.

Всё началось со статьи на хабре, о том, что некий анинимный хакер делился слитыми в сеть данными агентов ФБР. Я получил эти данные, и стал смотреть, что с ними можно сделать? В данных есть только фамилия, имя, и служебные мейлы и телефон – немного информации.

Fbi Detected: Как я обнаружил агентов ФБР - 1

Получив эти данные, я увидел, что они заканчиваются буквой J. То есть, датасет не полон. Интресено, каков его полный размер? Чтобы узнать его, надо построить статистику частоты встречаемости фамилий.

Для этого я начал искать наборы американских фамилий, и тут меня ждало открытие – в Америке можно найти открытые данные по, скажем, избирателям штата – как я понял, совершенно легально. Например, я за полчаса без проблем получаю данные всех избирателей штата Юта.

Читать полностью »

Во время общения с медиа мы в Relap.io часто сталкиваемся с массой заблуждений, в которые все верят, потому что так сложилось исторически. На сайте есть блоки типа «Читать также» или «Самое горячее» и т.п. Словом, всё то, что составляет обвязку статьи и стремится дополнить UX дорогого читателя. Мы расскажем, какие заблуждения есть у СМИ, которые делают контентные рекомендации, и развеем их цифрами.
 
HAbr1
 
 

Рекомендовать по тегам

Самое большое и самое популярное заблуждение. Чаще всего СМИ делают рекомендации в конце статьи по тегам. Так поступает Look At Me и РБК, например. Есть материал с тегами: трактор, Путин, сыр. К нему выводятся тексты про трактора, про Путина и сыр. На первый взгляд, логично:
вилладж
Подобная механика рекомендаций в реальной жизни выглядела бы так. Вы идёте в магазин за продуктами. И кладёте в корзину сливочное масло. К вам подходит консультант с потными от волнения ладошками и говорит: «О, я вижу, вы взяли масло и это значит, что вам нужно масло. Возьмите еще пять видов сливочного деревенского и подсолнечного и козьего масла». Максимум, что может случиться из ряда вон выходящее — вам предложат трансмиссионное, если вы читали что-то про автомобили. И это уже будет считаться rocket science.Читать полностью »

Есть прекрасный сайт www.reformagkh.ru. На нём можно найти, управляющую компанию, закреплённую за домом, сколько денег, на что тратится и всё такое. Но кроме этого можно узнать разные интересные вещи о нашей стране в целом, например, для каждого дома на сайте указана дата его постройки, поэтому можно посмотреть, как строилась Москва с 1900 года:
1 000 000 жилых домов России - 1

Ещё более эпичная картинка получается, если посмотреть на Россию целиком:
1 000 000 жилых домов России - 2
Читать полностью »

image

В начале марта в офисе Mail.Ru Group прошла двухдневная конференция Data Fest2, посвящённая всевозможным актуальным вопросам в сфере анализа данных, как практическим, так и теоретическим. Кроме того, в рамках конференции прошёл хакатон, участники которого пытались как можно точнее предсказать результаты турнира по Dota 2, а также питч-постер сессия для исследователей, на которой были представлены различные разработки и исследовательские проекты. Предлагаем вашему вниманию видеозаписи всех выступлений на Data Fest2.
Читать полностью »

В этой статье хочу поделиться способом, который позволил нам прекратить хаос с процессингом данных. Раньше я считал этот хаос и последующий ре-процессинг неизбежным, а теперь мы забыли что это такое. Привожу пример реализации на BiqQuery, но трюк довольно универсальный.
Строим надёжный процессинг данных — лямбда архитектура внутри Google BigQuery - 1
У нас вполне стандартный процесс работы с данными. Исходные данные в максимально сыром виде регулярно подгружаются в единое хранилище, в нашем случае в BigQuery. Из одних источников (наш собственный продакшн) данные приходят каждый час, из других (обычно сторонние источники) данные идут ежедневно.

В последствии данные обрабатываются до состояния пригодного к употреблению разнообразными пользователями. Это могут быть внутренние дашборды; отчёты партнёрам; результаты, которые идут в продакшн и влияют на поведение продукта. Эти операции могут быть довольно сложными и включать несколько источников данных. Но по большей части мы с этим справляется внутри BigQuery с помощью SQL+UDF. Результаты сохраняются в отдельные таблицы там же.
Читать полностью »

В прошлый раз мы подробно рассмотрели многообразие линейных моделей. Теперь перейдем от теории к практике и построим самую простую, но все же полезную модель, которую вы легко сможете адаптировать к своим задачам. Модель будет проиллюстрирована кодом на R и Python, причем сразу в трех ароматах: scikit-learn, statsmodels и Patsy.Читать полностью »

Меня зовут Дима и я разработчик. Живу в Минске, люблю посещать зарубежные конференции. Ну вот устал однажды ездить и решил сходить локально. Но выбора было мало. Поэтому вдвоём со своим верным товарищем решили сделать конференцию самостоятельно.
Назвали JET. Потому что начинается с J, как и Java, а ещё можно сделать слоган "Let's fly to Java world". Ну что же, как это было?

Открытие

Началось все с выступления организаторов, где мы поделились тем, как зарождалась идея конференции. Рассказали о том, как мы прошли путь в 4 месяца подготовки, и что по итогу получилось. А получилось — 3 потока концентрированных знаний, 300 участников и первый кирпичик в фундаменте дома конференции JET.

Вспомнить всё: Java-конференция JET. 28 сентября 2015. Отчёт - 1
Читать полностью »

Выборы в Государственную думу только осенью, но мы уже начинаем готовиться. Если повторится история 2011 года, будет очень интересно. Наверное, многие помнят, как сразу после тех выборов появилась куча статистических исследований, намекающих на фальсификации и как все узнали, как выглядит распределение Гаусса. Я хотел бы рассказать, где искать данные про выборы и как с ними работать. Кроме хорошо известных графиков я покажу некоторые другие прикольные картинки, которых раньше в паблике не видел. Так, например, выглядит распределение голосов за Единую Россию по стране, хорошо видны регионы с максимальной поддержкой партии власти — Северный Кавказ и Татарстан:
Анализ результатов выборов в Госдуму. Готовимся к голосованию 2016 года - 1

Есть такой замечательный сайт izbirkom.ru. Его здесь даже недавно упоминали в контексте, что, типа, на него потратили слишком много денег. Но лично мне не жалко, сайт прекрасный:
Анализ результатов выборов в Госдуму. Готовимся к голосованию 2016 года - 2
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js