Рубрика «data mining» - 64

bayesian

Почему?

Сейчас Relap.io генерирует 40 миллиардов рекомендаций в месяц на 2000 медиаплощадках Рунета. Почти любая рекомендательная система, рано или поздно, приходит к необходимости брать в расчет содержимое рекомендуемого контента, и довольно быстро упирается в необходимость как-то его классифицировать: найти какие-то кластеры или хотя бы понизить размерность для описания интересов пользователей, привлечения рекламодателей или еще для каких-то темных или не очень целей.

Задача звучит довольно очевидно и существует немало хорошо зарекомендовавших себя алгоритмов и их реализаций: Латентное размещение Дирихле (LDA), Вероятностный латентно-семантический анализ (pLSA), явный семантический анализ (ESA), список можно продолжить. Однако, мы решили попробовать придумать что-нибудь более простое, но вместе с тем, жизнеспособное.
Читать полностью »

По просьбе хабрачан продолжим публикации об исследовании обсценной лексики. (Если кто не читал первую часть, то можете ознакомиться).
Начнем сразу с картинок.
Итак, картинка первая.
Четыре слова, которые нельзя (часть 2) - 1
Рис.1. Распределение обсценной лексики по источникам.
Читать полностью »

image

При выполнении аналитических задач SEO, SMM, маркетинга мы столкнулись с непомерно растущим количеством инструментов для обработки данных. Каждый заточен под свои возможности или доступность для пользователя: Excel и VBA, сторонние SEO-инструменты, PHP и MySQL, Python, C, Hive и другие. Разнообразные системы и источники данных добавляют проблем: счетчики, рекламные системы, CRM, инструменты вебмастера Яндекса и Google, соцсети, HDFS. Необходим инструмент, совмещающий в себе простоту настройки и использования, модули для получения, обработки и визуализации данных, а также работы с различными типами источников. Выбор пал на iPython notebook (с недавних пор Jupyter notebook), представляющий собой платформу для работы со скриптами на 40 языках программирования. Широкое распространение платформа получила для научных вычислений, среди специалистов по обработке данных и машинному обучению. К сожалению для автоматизации и обработки данных маркетинговых задач Jupyter notebook используется крайне редко.
Читать полностью »

Рост хоккеистов: анализируем данные всех чемпионатов мира в текущем веке - 1

На днях завершился очередной чемпионат мира по хоккею.

За просмотром матчей родилась идея. Когда в перерывах телевизионная камера показывает уходящих в раздевалку игроков, трудно не заметить, насколько они огромные. На фоне тренеров, функционеров команд, сотрудников ледовой арены, журналистов или просто фанатов они, как правило, выглядят очень внушительно.

Вот, к примеру, восходящие звезды финского хоккея, Патрик Лайне и Александр Барков, вместе с преданными поклонниками

И я задался вопросами. Действительно ли хоккеисты выше обычных людей? Как изменяется рост хоккеистов со временем в сравнении с обычными людьми? Есть ли устойчивые межстрановые различия?

Читать полностью »

imageКак многим известно из прессы, международный консорциум журналистов-расследователей (ICIJ) выложил в свободный доступ, так называемый «Панамский архив»: сведения о лицах, связанных с офшорными компаниями по всему миру, полученные неизвестными лицами из панамской юридической фирмы Mossack Fonseca.

Можно по разному относиться и к самим этим данным, к способу их получения и публикации в открытом доступе. Но, если абстрагироваться от этих вопросов, то это просто информация, которую можно обработать и на которую можно посмотреть с разных углов (в прямом смысле).

Читать полностью »

Полгода назад я писал про то, как мы участвовали в конкурсе по открытым данным с проектом "Московские школы". Потом было исследование московских результатов ЕГЭ, московских кружков и секций. Недавно удалось собрать все результаты в одном месте и аккуратно оформить:
Выбор школы в Москве the hard way - 1

Я хотел бы подробно рассказать про процесс сбора и обработки школьных данных. Оказывается, что для каждой школы в Москве публикуется достаточно много информации: результаты ЕГЭ, ГИА и олимпиад, профили учителей, бухгалтерская отчётность и списки кружков.
Читать полностью »

Пропущенные значения в данных — обычное в реальных задачах явление. Нужно знать, как эффективно работать с ними, если цель — уменьшить погрешность и построить точную модель. Давайте рассмотрим разные варианты обработки пропущенных значений и их реализацию.
Читать полностью »

Как-то раз, читая новости на Медузе, я обратил внимание на то, что у разных новостей разное соотношение лайков из Facebook и ВКонтакте. Какие-то новости мегапопулярны на fb, а другими люди делятся только во ВКонтакте. Захотелось присмотреться к этим данным, попытаться найти в них интересные закономерности. Заинтересовавшихся приглашаю под кат!

imageЧитать полностью »

Приглашаем на конференцию по искусственному интеллекту и большим данным AI&BigData Lab 4 июня - 1

4 июня в Одессе, наша команда FlyElephant совместно с GeeksLab будет проводить третью ежегодную техническую конференцию по искусственному интеллекту и большим данным — AI&BigData Lab.

На конференции разработчики обсудят вопросы реализации и применения различных алгоритмов, инструментов и новых технологий для работы с большими данными и искусственным интеллектом. Будут представлены воплощенные в жизнь проекты, рассказано о функционале и принципах их работы.

Программа конференции AI&BigData Lab уже частично сформирована. Среди принятых докладов можно отметить:
Читать полностью »

Плохой пример хорошего теста

Примечание переводчика:
Изначально статья задумывалась как вольный перевод текста Дона Дрейка (@dondrake) для Cloudera Engineering Blog об опыте сравнения Apache Avro и Apache Parquet при использовании Apache Spark. Однако в процессе перевода я углубился в детали и нашел в тестах массу спорных моментов. Я добавил к статье подзаголовок, а текст снабдил комментариями со злорадным указанием неточностей.

В последнее время в курилках часто возникали дискуссии на тему сравнения производительности различных форматов хранения данных в Apache Hadoop — включая CSV, JSON, Apache Avro и Apache Parquet. Большинство участников сразу отметают текстовые форматы как очевидных аутсайдеров, оставляя главную интригу состязанию между Avro и Parquet.

Господствующие мнения представляли собой неподтвержденные слухи о том, что один формат выглядит "лучше" при работе со всем датасетом, а второй "лучше" справляется с запросами к подмножеству столбцов.

Как любой уважающий себя инженер, я подумал, что было бы неплохо провести полноценные performance-тесты, чтобы наконец проверить, на чьей стороне правда. Результат сравнения — под катом.

Apache Parquet LogoЧитать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js