Сегодня существует 100500 курсов по Data Science и давно известно, что больше всего денег в Data Science можно заработать именно курсами по Data Science (зачем копать, когда можно продавать лопаты?). Основной минус этих курсов в том, что они не имеют ничего общего с реальной работой: никто не даст вам чистые, обработанные данные в нужном формате. И когда вы выходите с курсов и начинаете решать настоящую задачу — всплывает много нюансов.
Поэтому мы начинаем серию заметок «Что может пойти не так с Data Science», основанных на реальных событиях случившихся со мной, моими товарищами и коллегами. Будем разбирать на реальных примерах типичные задачи по Data Science: как это на самом деле происходит. Начнем сегодня с задачи сбора данных.
И первое обо что спотыкаются люди, начав работать с реальными данными — это собственно сбор этих самых релевантных нам данных. Ключевой посыл этой статьи:
Мы систематически недооцениваем время, ресурсы и усилия на сбор, очистку и подготовку данных.
А главное, обсудим, что делать, чтобы этого не допустить.
По разным оценкам, очистка, трансформация, data processing, feature engineering и тд занимают 80-90% времени, а анализ 10-20%, в то время как практически весь учебный материал фокусируется исключительно на анализе.
Давайте разберем как типичный пример простую аналитическую задачу в трех вариантах и увидим, какими бывают «отягчающие обстоятельства».
И для примера опять же, мы рассмотрим подобные вариации задачи сбора данных и сравнения сообществ для:
- Двух сабреддитов Reddit
- Двух разделов Хабра
- Двух групп Одноклассников