Рубрика «data mining» - 49

1. Вступление

Небольшой рассказ об основных метриках работы асессора, которые используются как в глобальных исследованиях открыто опубликованной информации, так и в локальных задачах (например: повышение конверсии проектов, социальные и психологические исследования). Многие из упомянутых метрик не являются специфическими, а относятся к методам математической статистики, теории вероятностей и к метрикам качества машинного обучения.

Читать полностью »

Видеозапись вебинара «Julia — A fresh approach to numerical computing and data science» - 1

Команда FlyElephant в марте проводила вебинар с со-основателем и CEO в Julia Computing, а также со-автором языка Julia — Viral B. Shah, на тему "Julia — A fresh approach to numerical computing and data science".

Читать полностью »

Вчера на митапе, посвященном Apache Spark, от ребят из Rambler&Co, было довольно много вопросов от участников, связанных с конфигурированием этого инструмента. Решили по его следам поделиться своим опытом. Тема непростая — поэтому предлагаем делиться опытом тоже в комментариях, может быть, мы тоже что-то не так понимаем и используем.
Читать полностью »

PyMC3 — МСМС и не только

PyMC3 — MCMC и не только - 1
Привет!

В этом посте уже упоминался PyMC3. Там можно почитать про основы MCMC-сэмплирования. Здесь я расскажу про вариационный вывод (ADVI), про то, зачем все это нужно и покажу на довольно простых примерах из галереи PyMC3, чем это может быть полезно. Одним из таких примеров будет байесовская нейронная сеть для задачи классификации, но это в самом конце. Кому интересно — добро пожаловать!

Читать полностью »

Меня зовут Пётр Ромов, я — data scientist в Yandex Data Factory. В этом посте я предложу сравнительно простой и надежный способ начать карьеру аналитика данных.

Многие из вас наверняка знают или хотя бы слышали про Kaggle. Для тех, кто не слышал: Kaggle — это площадка, на которой компании проводят конкурсы по созданию прогнозирующих моделей. Её популярность столь велика, что часто под «кэглами» специалисты понимают сами конкурсы. Победитель каждого соревнования определяется автоматически — по метрике, которую назначил организатор. Среди прочих, Kaggle в разное время опробовали Facebook, Microsoft и нынешний владелец — Google. Яндекс тоже несколько раз отметился. Как правило, Kaggle-сообществу дают решать задачи, довольно близкие к реальным: это, с одной стороны, делает конкурс интересным, а с другой — продвигает компанию как работодателя с солидными задачами. Впрочем, если вам скажут, что компания-организатор конкурса задействовала в своём сервисе алгоритм одного из победителей, — не верьте. Обычно решения из топа слишком сложны и недостаточно производительны, а погони за тысячными долями значения метрики не настолько и нужны на практике. Поэтому организаторов больше интересуют подходы и идейная часть алгоритмов.

Спортивный анализ данных, или как стать специалистом по data science - 1

Kaggle — не единственная площадка с соревнованиями по анализу данных. Существуют и другие: DrivenData, DataScience.net, CodaLab. Кроме того, конкурсы проводятся в рамках научных конференций, связанных с машинным обучением: SIGKDD, RecSys, CIKM.

Для успешного решения нужно, с одной стороны, изучить теорию, а с другой — начать практиковать использование различных подходов и моделей. Другими словами, участие в «кэглах» вполне способно сделать из вас аналитика данных. Вопрос — как научиться в них участвовать?

Читать полностью »

Видеозаписи докладов конференции AI&BigDataLab за последние три года - 1

Через 2 недели, 13 мая в Одессе, команда FlyElephant будет проводить конференцию Data Science Lab. Это будет наша 4-я конференция, которая посвящена искусственному интеллекту, большим данным и науке о данных.

Сегодня я хочу поделиться видеозаписями всех докладов с прошлых конференций. Смотрите, изучайте и делитесь:


Это третья публикация в рамках помощи участникам конкурса «SAP Кодер-2017».


Каждое предприятие в процессе своей жизнедеятельности генерирует значительное количество данных, как «больших», так и не очень. Эти данные часто можно использовать для получения нового знания, которое, в свою очередь может оказать существенное влияние на стратегию развития бизнеса или тактику поведения в некоторые локальные моменты работы. Сейчас, в связи с развитием вычислительной техники и ростом объема накопленных данных, большое развитие получили численные методы, позволяющие извлекать полезную информацию из массива «сырых» данных и использовать ее в различных бизнес-сценариях.

Предиктивная аналитика на платформе SCP - 1
Читать полностью »

Приглашаем на IV конференцию по практическому применению науки о данных DataScience Lab 13 мая - 1

Команда FlyElephant приглашает всех 13 мая в Одессу на IV конференцию по практическому применению науки о данных Data Science Lab (exAI&BigDataLab).

Data Science Lab — это ежегодная техническая конференция, которая объединяет исследователей, инженеров и разработчиков, связанных с Data Science для обмена опытом и обсуждения актуальных тем в области машинного обучения, обработки естественного языка, распознавания образов и других аспектов анализа данных. Темы докладов раскрывают вопросы от практического внедрения результатов исследований до самых последних теоретических разработок.
Читать полностью »

Однажды томным вечером, сидя напротив мелькающей ленты tjournal и попивая ромашковый чай, внезапно обнаружил себя за чтением статьи про советскую лампочку, которая освещала чей-то подъезд уже 80 лет. Да, весьма интересно, но все же я предпочитаю статьи про политику достижения ИИ в игре дум, приключения ракет SpaceX и, в конце концов, — с наибольшим кол-вом просмотров. А какие вообще статьи набирают внушительные рейтинги? Посты размером с твит про какую-то политическую акцию или же талмуды с детальным анализом российской киноиндустрии? Ну что же, тогда самое время расчехлять свой Jupyter notebook и выводить формулу идеальной статьи.

Предсказываем популярность статьи на TJ - 1

Читать полностью »

image

21 апреля мы открываем четвертое по счету соревнование по машинному обучению на платформе ML Boot Camp. Сегодня мы расскажем о новой задаче, обновлениях на сайте и других полезных ништяках. А если вы вдруг впервые слышите, что такое ML Boot Camp, заходите под спойлер, и мы все расскажем.

О платформе ML Boot Camp

ML Boot Camp — площадка для решения задач по машинному обучению. Периодически мы выкладываем на ней новые задачи и запускаем контест. Участники должны решить нашу задачу в течение месяца и прислать решение. Авторы лучших решений получат призы. В прошлом чемпионате мы дарили MacBook Air за первое место, iPad — за второе и третье и iPod nano — за 4-6 места.

На старте участники получают условия задачи, словесное описание доступных данных — обучающую выборку. Выборка состоит из размеченных примеров — векторов описаний каждого объекта с известным ответом. Участники с помощью известных им методов машинного обучения тренируют компьютер. Обученную систему они используют на новых объектах (тестовой выборке), пытаясь определить ответ для них.

Тестовая выборка случайно поделена на две части: рейтинговую и финальную. Общий результат на рейтинговых данных вычисляется системой и публикуется сразу, но победителем становится тот, кто получит наилучшие результаты на финальных данных. Результаты остаются скрытыми для участников до самого конца соревнования.

В последний день чемпионата участник может выбрать два решения, которые будут представлять его в финале. Лучшее из них пойдет в зачет на таблице лидеров.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js