Это по большей мере личный пост, а не какое-то глубокое исследование. Если вам нужны какие-то выводы, то здесь вы их не найдёте. Откровенно говоря, я даже не знаю, кто его целевая аудитория (возможно «дата-саентисты, которые себя ненавидят»?).
Последние несколько лет я был дата-саентистом, но в 2022 году получил новую должность дата-инженера, и пока я ею вполне доволен.
Я по-прежнему работаю вместе с «дата-саентистами» и немного продолжаю заниматься этой сферой, но вся моя работа по «data science» заключается в руководстве и консультировании по чужой работе. Я в большей степени занимаюсь реализацией data science (MLOps) и дата-инжинирингом.
Основная причина разочарования в data science заключалась в том, что работа казалась несущественной, во многих смыслах этого слова «неважной»:
- Работа — это непрекращающийся поток разработки, продукта и офисной политики, поэтому часто так бывает, что работа хороша настолько, насколько хорошо самое слабое звено в цепи.
- Никто не знал, в чём заключается разница между плохой и хорошей работой в data science, да никого это и не волновало. Это значит, что вы можете быть абсолютным неудачником или гением в ней, но в любом случае получите примерно одинаковое признание.
- Работа часто приносила очень малую пользу бизнесу (часто компенсируя некомпетентность выше по цепочке управления).
- Когда польза от работы превышала затраты на оплату труда, часто это не давало внутренней отдачи (например, настройка параметра, чтобы бизнес зарабатывал больше денег).
Читать полностью »