Рубрика «data engineering»

Nvidia Triton Inference Server: строим production ML без разработчиков - 1

Привет! Меня зовут Антон, я DevOps-инженер в команде Data/ML-продуктов Selectel. В этой статье расскажу про наш новый продукт — Inference-платформу Selectel, а также вызовы, с которыми мы столкнулись при ее разработке без разработчиков.

Почему без разработчиков? Рынок ML все еще молодой. В его российском сегменте не так много решений, связанных с Inference‑платформами. Перед началом создания полноценного продукта наша команда сначала проверяет технологические гипотезы, не растрачивая существенные ресурсы на разработку. Все делается силами небольшой команды Ops‑инженеров. Мы используем сервисы с открытым исходным кодом на базе инфраструктуры облака Selectel — тем самым достаточно быстро и недорого тестируем предположения, а в случае успеха легко масштабируем до готового продукта. Дальнейшее развитие уже определяется обратной связью от наших клиентов.Читать полностью »

Привет!
Я работаю Chief Data Officer в средней российской компании и, думаю, попробовал "всякое" в плане работы с документацией для команды, которая работает с данными.
Хочу поделиться своим опытом того, что "маст хев" в документации в Вашем проекте, когда есть планы вроде "make analysis great [again]".

Если работаете с цифрами, наверняка Вы уже не раз задавались простыми вопросами вроде

  • как это считается?

  • откуда берётся?

  • что значить эта аббревиатура?

  • а кто это вообще просил?

  • кто сопровождает этот отчёт?

  • что эта колонка в таблице означает?

  • что хотели решить этим дешем?

Читать полностью »

Вступление

Сегодня поговорим о T-shape — концепции, которая играет огромную роль для дата-инженеров и профессионалов в работе с данными.

Почему важно быть не только специалистом в своей области, но и понимать, как работают другие направления? Почему T-shape подход лучше узкой специализации или полной универсальности?

В этой статье мы разберём, что такое T-shape подход к развитию, почему он важен именно в работе с данными, и как он помогает стать более эффективным специалистом.

Давайте разбираться.

Что такое I-shape, T-shape и дженералистЧитать полностью »

Всем привет! Меня зовут Илья Черников, я аналитик больших данных в X5 Tech, сейчас занимаюсь аналитикой и оценкой активностей CVM маркетинга экспресс-доставки “Пятёрочки”.

В статье я расскажу о том, как мы решали вопрос автоматизации оценки эффективности большого количества маркетинговых кампаний с помощью бутстрапа в PySpark. Я опишу различные подходы к реализации бутстрапа с их плюсами и минусами, а также расскажу об итоговом варианте, который мы выбрали для себя.

Небольшой сэмпл данных и тетрадки с примерами запусков описанных ниже вариантов реализации можно увидеть в Читать полностью »

ETL-проект для начинающих Data Engineers: От почтового сервера до Greenplum - 1

Привет!
Меня зовут Дмитрий и я работаю инженером данных.

Читать полностью »

OpenAI изменили направление развития своих языковых моделей, от просто генерации текста их последняя модель перешла к решению задач с использованием логики и пошагового анализа проблемы.

До сих пор LLM генерировали текст на основе данных, использованных в процессе обучения. Веса модели хранят представление о зависимостях между текстовыми токенами, полученное из исходного корпуса данных. Соответственно, модель просто генерирует наиболее вероятные токены "по памяти", но не выполняет с их помощью никакой по-настоящему интеллектуальной работы.

o1 - это модель рассужденияЧитать полностью »

Привет!

Меня зовут Петр. Я работаю инженером по данным в Okko и обожаю ClickHouse. 

Примерно в середине прошлого года мы начали увлекательный процесс переезда хранилища с PostgreSQL (плюс частично HDFS) на ClickHouse. Причин для переезда было несколько, но одной из главных была низкая производительность — среднее время аналитического запроса составляло около минуты. Понятно, что запросы бывают не оптимальные. Но сейчас, после переезда, среднее время запроса в аналитическом кластере составляет около 2 с. И это не предел.

Читать полностью »

Я начала пользоваться ClickHouse до того, как это стало мэйнстримом: первый раз я столкнулась c этой базой данных лет 8 назад. C тех пор я уверена, что это лучшая DB для аналитики. Большинство аналитиков, которых я знаю, в восторге от ClickHouse (иногда чтобы проникнуться, требуется немного времени: разобраться и привыкнуть к синтаксису). Однако, я не могу не отметить, что администрирование ClickHouse имеет свои нюансы и подводные камни, но это уже совсем другая история.

В этой статье я расскажу что такое ClickHouse и почему я считаю его идеально подходящим мощным инструментом для аналитики. А также поделюсь tips & tricks из моего опыта. Поехали.

Читать полностью »

Три года я был эстонским пивоваром: придумывал рецепты и сам варил. Когда начал изучать Python, SQL и анализ данных, понял, что между подготовкой данных и подготовкой сусла много общего: оказывается, в цеху я занимался DS, но не подозревал об этом. Меня зовут Алексей Гаврилов, я сеньор дата-аналитик в ретейле. В этой статье расскажу, чем пивоварение и аналитика данных похожи изнутри.

Читать полностью »

https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js