Рубрика «data augmentation»

Как научить машину понимать инвойсы и извлекать из них данные - 1Привет! Меня зовут Станислав Семенов, я работаю над технологиями извлечения данных из документов в R&D ABBYY. В этой статье я расскажу об основных подходах к обработке полуструктурированных документов (инвойсы, кассовые чеки и т.д.), которые мы использовали совсем недавно и которые используем прямо сейчас. А еще мы поговорим о том, насколько для решения этой задачи применимы методы машинного обучения.
Читать полностью »

Привет! Продолжаем серию материалов от выпускника нашей программы Deep Learning, Кирилла Данилюка, об использовании сверточных нейронных сетей для распознавания образов — CNN (Convolutional Neural Networks)

Введение

За последние несколько лет сфера компьютерного зрения (CV) переживает если не второе рождение, то огромный всплеск интереса к себе. Во многом такой рост популярности связан с эволюцией нейросетевых технологий. Например, сверточные нейронные сети (convolutional neural networks или CNN) отобрали себе большой кусок задач по генерации фич, ранее решаемых классическими методиками CV: HOG, SIFT, RANSAC и т.д.

Маппинг, классификация изображений, построение маршрута для дронов и беспилотных автомобилей — множество задач, связанных с генерацией фич, классификацией, сегментацией изображений могут быть эффективно решены с помощью сверточных нейронных сетей.

Распознавание дорожных знаков с помощью CNN: Инструменты для препроцессинга изображений - 1
MultiNet как пример нейронной сети (трех в одной), которую мы будем использовать в одном из следующих постов. Источник.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js