Рубрика «CUDA» - 6

Аннотация

В данной статье хочу рассказать как можно эффективно распараллелить алгоритм SSSP — поиска кратчайшего пути в графе с использованием графических ускорителей. В качестве графического ускорителя будет рассмотрена карта GTX Titan архитектуры Kepler.

Введение

В последнее время все большую роль играют графические ускорители (GPU) в не графических вычислениях. Потребность их использования обусловлена их относительно высокой производительностью и более низкой стоимостью. Как известно, на GPU хорошо решаются задачи на структурных сетках, где параллелизм так или иначе легко выделяется. Но есть задачи, которые требуют больших мощностей и используют неструктурные сетки. Примером такой задачи является Single Shortest Source Path problem (SSSP) – задача поиска кратчайших путей от заданной вершины до всех остальных во взвешенном графе. Для решения данной задачи на CPU существует, по крайней мере, два известных алгоритма: алгоритм Дейсктры и алгоритм Форда-Беллмана. Так же существуют параллельные реализации алгоритма Дейстры и Форда-Беллмана на GPU. Вот основные статьи, в которых описаны решения данной задачи:
Читать полностью »

image

Предисловие

Доброго времени суток! Сегодня решил поделиться с Вами сокровенным — одним из своих любимых велосипедов.

Начну издалека — довольно долго я работал на одном радиозаводе в Челябинске, и был у нас (вообще и сейчас есть, просто я уже не там) один мега-проект: оптико-электронный модуль для охраны физических объектов. Это такая здоровая штука на поворотной установке, с тремя камерами на все случаи жизни (цветная — дневная, ЧБ светочувствительная — для сумерек, и тепловизор — для ночного наблюдения). Берётся такой модуль, ставится на вышку высотой метров 50 — и можно днём и ночью держать под наблюдением территорию в радиусе 4-5 километров. Подробности писать не стану, не о том пост. Кому интересно — сами найдут.

Разумеется, интересных задачек по обработке изображений было много. Об одной из таких я и хочу рассказать. А именно — как использовать массивно-парралельные вычисления для компенсации дрожания камеры в реальном времени, или почему SURF подходит не всегда. Добро пожаловать под кат.
Читать полностью »

Введение

Я описываю результаты применения способов оптимизации вычислений на CUDA при моделировании плазмы. Вычисления производятся с использованием Java-привязки к CUDA (JCUDA) [1] на GT630 (Kepler). Моделирование происходит как решение задачи Коши — задание значений параметров в начальный момент времени, затем приращение времени и перерасчет всех уравнений, и т.д. многократно. Вычисления происходят в двойной точности (double). Правильность полученных результатов подтверждена вычислениями на CPU без JCUDA.Читать полностью »

Многие из новейших суперкомпьютеров основаны на аппаратных ускорителях вычислений (accelerator). включая две самые быстрые системы согласно TOP500 от 11/2013. Ускорители распространяются так же и на обычных PC и даже появляются в портативных устройствах, что ещё больше способствовует росту интереса к программированию ускорителей.

Такое широкое применение ускорителей является результатом их высокой производительности, энергоэффективности и низкой стоимости. Например, если сравнить Xeon E5-2687W и GTX 680, выпущенные в марте 2012, мы увидим, что GTX 680 в четыре раза дешевле, имеет в 8 раз большую производительность операций одинарной точности и в 4 раза большую пропускную способность памяти, а так же обеспечивает более 30 раз большую производительность в пересчёте на доллар и в 6 раз большую производительность на ватт. Исходя из таких сравнительных результатов, ускорители должны бы использоваться везде и всегда. Почему же этого не происходит?
Читать полностью »

Давным давно, в 2008 году, когда я работал над своей диссертацией меня заинтересовала тема применения сверточных нейронных сетей для задач распознавания изображений. На тот момент они еще не были так популярны как сейчас и попытка найти готовые библиотеки ни к чему не привела — нашлась только реализация на Lush (языке созданном автором сверточных сетей, Яном ЛеКуном). Тогда я подумал, что можно было бы их реализовать на Матлабе используя Neural Network Toolbox. Но столкнулся с невозможностью реализации разделяемых весов в рамках этого тулбокса. И тогда было принято решение написать собственную реализацию.
Читать полностью »

в 9:48, , рубрики: CUDA, gpgpu, release, метки: , ,

image Несколько дней назад состоялся релиз CUDA 5.5. К сожалению, основное число нововведений и удобностей касается владельцев видеокарт с Compute Capability 3.5.

Но есть кое-что, что подойдет всем пользователям основных дистрибутивов Linux — появились репозитории!

Полный список можно посмотреть в официальном pdf. Под катом список того, что мне показалось наиболее интересным.

Читать полностью »

Современному программисту, математику или аналитику часто приходится проектировать, а то и создавать программно-аппаратные комплексы для работы с большими массивами числовых данных. Построение имитационных моделей, прогнозирование, расчёт статистики, управление оперативными процессами, финансовый анализ, обработка экспериментальных данных — везде требуется получить максимальную скорость вычислений на единицу затрат.

При этом большинство ну хотя бы минимально сложных и функциональных систем (во всяком случае, из тех, что встречались лично мне за 8 лет работы в банковской сфере), как правило, гетерогенны — состоят из множества функциональных блоков, как пёстро сшитое лоскутное одеяло, где каждый лоскуток выполняется разным приложением, зачастую даже на различных аппаратных платформах. Почему? Да просто это рационально и удобно. Каждый продукт хорош в своей области. Например, экономисты любят использовать Ms Excel для анализа и визуализации данных. Но мало кому в голову придёт использовать эту программу для обучения серьёзных искусственных нейросетей или решения дифференциальных уравнений в реальном времени — для этого зачастую приобретаются (или уже приобретены компанией) мощные универсальные пакеты, предлагающие гибкий API, или под заказ пишутся отдельные модули. Вот и получается, что результат считать выгоднее в том же Matlab, хранить в таблицах СУБД Oracle (запущенной на кластере Linux), а отчёт показывать пользователям в приложении Excel, работающем как OLE server на Windows. Причём связаны все эти компоненты одним из универсальных языков программирования.

Как выбрать оптимальную среду реализации для конкретной задачи?Читать полностью »

Недавно я опубликовал статью о распределенном рендеринге на GPU — поступили некоторые вопросы и предложения. Поэтому считаю нужным рассказать о теме более развернуто (и с картинками, а то без картинок статьи практически не читают), тем самым привлечь к этой теме больше читателей.
Думаю, этим вопросом заинтересуются обладатели мощных вычислительных систем: майнеры, геймеры, админы других мощных вычислительных систем.

Многие обладатели мощного железа задумывались над тем, а нельзя ли подзаработать на мощности своей железки, пока она стоит бестолку?

Альтернативное использование мощностей GPU?
Красота моя бестоковая!
Читать полностью »

в 13:54, , рубрики: CUDA, gpgpu, OpenGL, метки: ,

Знакомство с OpenGL InteroperabilityВсем доброго дня,

Надеюсь, при прочтении этого блока в своём ридере, моя картинка вас не напугала. Но сегодня, я хочу описать применение взаимодействия технологии CUDA с OpenGL на примере моего небольшого pet-примера, первую версию которого я описывал в статье ранее. Тех, кому интересен раздел, известный под английским названием CUDA and OpenGL interoperability, Читать полностью »

Данная статья написана с целью продемонстрировать как с помощью технологии CUDA можно смоделировать простое взаимодействие заряженых частиц (см. Закон Кулона). Для вывода статической картинки я использовал библиотеку freeglut.
Как пишут частенько на Хабре: Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js