Рубрика «CUDA» - 5

Введение

Данная статья кратко описывает распараллеливание расчетов на вычислительных мощностях CPU и GPU. Перед тем как перейти к описанию самих алгоритмов, ознакомлю вас с поставленной задачей.

Необходимо смоделировать систему решения задач методом конечных разностей. С математической точки зрения это выглядит следующим образом. Дана некоторая конечная сетка:

Распараллеливание расчетов на CPU и GPU - 1

Неизвестные значения сетки находятся по следующей формуле методом конечных разностей:

Распараллеливание расчетов на CPU и GPU - 2
Читать полностью »

image

Случилось! Модуль визуализации Cycles на движке OpenCL новой версии Blender 2.75 официально поддерживает рендеринг с помощью видеокарт с GPU от AMD. Хотя всё ещё с некоторыми ограничениями и без прироста производительности (об этом ниже). Я уже около трёх лет наблюдаю за ходом развития событий в ожидании развязки. История, судя по всему, близится к своему счастливому финалу (хотелось бы в это верить).Читать полностью »

Содержание

Часть 1: Введение.
Часть 2: Аппаратное обеспечение GPU и шаблоны параллельной коммуникации.
Часть 3: Фундаментальные алгоритмы GPU: свертка (reduce), сканирование (scan) и гистограмма (histogram).
Часть 4: Фундаментальные алгоритмы GPU: уплотнение (compact), сегментированное сканирование (segmented scan), сортировка. Практическое применение некоторых алгоритмов.
Часть 5: Оптимизация GPU программ.
Часть 6: Примеры параллелизации последовательных алгоритмов.
Часть 7: Дополнительные темы параллельного программирования, динамический параллелизм.

Disclaimer

Эта часть в основном теоретическая, и скорее всего не понадобится вам на практике — все эти алгоритмы уже давно реализованы в множестве библиотек.

Читать полностью »

Содержание

Часть 1: Введение.
Часть 2: Аппаратное обеспечение GPU и шаблоны параллельной коммуникации.
Часть 3: Фундаментальные алгоритмы GPU: свертка (reduce), сканирование (scan) и гистограмма (histogram).
Часть 4: Фундаментальные алгоритмы GPU: уплотнение (compact), сегментированное сканирование (segmented scan), сортировка. Практическое применение некоторых алгоритмов.
Часть 5: Оптимизация GPU программ.
Часть 6: Примеры параллелизации последовательных алгоритмов.
Часть 7: Дополнительные темы параллельного программирования, динамический параллелизм.
Читать полностью »

Еще одна статья о CUDA — зачем?

На Хабре было уже немало хороших статей по CUDA — раз, два и другие. Однако, поиск комбинации «CUDA scan» выдал всего 2 статьи никак не связанные с, собственно, алгоритмом scan на GPU — а это один из самых базовых алгоритмов. Поэтому, вдохновившись только что просмотренным курсом на Udacity — Intro to Parallel Programming, я и решился написать более полную серию статей о CUDA. Сразу скажу, что серия будет основываться именно на этом курсе, и если у вас есть время — намного полезнее будет пройти его.
Читать полностью »

Wi Fi сети: проникновение и защита. 3) WPA. OpenCL/CUDA. Статистика подбора

Баста карапузики, кончилися танцы.

В предыдущей части мы детально рассмотрели «читерские» приёмы обхода «защит» (скрытие SSID, MAC-фильтрация) и защит (WPS) беспроводных сетей. И хотя работает это в половине случаев, а иногда и чаще — когда-то игры заканчиваются и приходится браться за тяжёлую артиллерию. Вот тут-то между вашей личной жизнью и взломщиком и оказывается самое слабое звено: пароль от WPA-сети.

В статье будет показан перехват рукопожатия клиент-точка доступа, перебор паролей как с помощью ЦП, так и ГП, а кроме этого — сводная статистика по скоростям на обычных одиночных системах, кластерах EC2 и данные по разным типам современных GPU. Почти все они подкреплены моими собственным опытом.

К концу статьи вы поймёте, почему ленивый 20-значный пароль из букв a-z на пару солнц более стоек, чем зубодробительный 8-значный, даже использующий все 256 значений диапазона.

Оглавление:
1) Матчасть
2) Kali. Скрытие SSID. MAC-фильтрация. WPS
3) WPA. OpenCL/CUDA. Статистика подбора
Читать полностью »

Аннотация

В данной статье хочу рассказать как можно эффективно распараллелить алгоритм BFS — поиск в ширину в графе с использованием графических ускорителей. В статье будет приведен подробный анализ полученного алгоритма. Вычисления выполнялись на одном GPU GTX Titan архитектуры Kepler.

Введение

В последнее время все большую роль играют графические ускорители (GPU) в не графических вычислениях. Потребность их использования обусловлена их относительно высокой производительностью и более низкой стоимостью. Как известно, на GPU хорошо решаются задачи на структурных сетках, где параллелизм так или иначе легко выделяется. Но есть задачи, которые требуют больших мощностей и используют неструктурные сетки. Примером такой задачи является Single Shortest Source Path problem (SSSP) – задача поиска кратчайших путей от заданной вершины до всех остальных во взвешенном графе. Решение данной задачи рассмотрено мной в этой статье. Вторым примером задачи на неструктурных сетках является задача Breadth First Search (BFS) — поиска в ширину в неориентированном графе. Данная задача является основной в ряде алгоритмов на графах. Также она немного проще, чем поиск кратчайшего пути. На данный момент алгоритм BFS используется как основной тест для рейтинга Graph500. Далее рассмотрим, как можно использовать идеи решения задачи SSSP в задаче BFS. Про архитектуру GPU компании Nvidia и об упомянутых алгоритмах уже много написано, поэтому в этой статье я не стану дополнительно писать про это. Так же, надеюсь, что понятия warp, cuda блок, SMX, и прочие базовые вещи, связанные с CUDA читателю знакомы.
Читать полностью »

Аннотация

В данной статье хочу рассказать как можно эффективно распараллелить алгоритм SSSP — поиска кратчайшего пути в графе с использованием графических ускорителей. В качестве графического ускорителя будет рассмотрена карта GTX Titan архитектуры Kepler.

Введение

В последнее время все большую роль играют графические ускорители (GPU) в не графических вычислениях. Потребность их использования обусловлена их относительно высокой производительностью и более низкой стоимостью. Как известно, на GPU хорошо решаются задачи на структурных сетках, где параллелизм так или иначе легко выделяется. Но есть задачи, которые требуют больших мощностей и используют неструктурные сетки. Примером такой задачи является Single Shortest Source Path problem (SSSP) – задача поиска кратчайших путей от заданной вершины до всех остальных во взвешенном графе. Для решения данной задачи на CPU существует, по крайней мере, два известных алгоритма: алгоритм Дейсктры и алгоритм Форда-Беллмана. Так же существуют параллельные реализации алгоритма Дейстры и Форда-Беллмана на GPU. Вот основные статьи, в которых описаны решения данной задачи:
Читать полностью »

image

Предисловие

Доброго времени суток! Сегодня решил поделиться с Вами сокровенным — одним из своих любимых велосипедов.

Начну издалека — довольно долго я работал на одном радиозаводе в Челябинске, и был у нас (вообще и сейчас есть, просто я уже не там) один мега-проект: оптико-электронный модуль для охраны физических объектов. Это такая здоровая штука на поворотной установке, с тремя камерами на все случаи жизни (цветная — дневная, ЧБ светочувствительная — для сумерек, и тепловизор — для ночного наблюдения). Берётся такой модуль, ставится на вышку высотой метров 50 — и можно днём и ночью держать под наблюдением территорию в радиусе 4-5 километров. Подробности писать не стану, не о том пост. Кому интересно — сами найдут.

Разумеется, интересных задачек по обработке изображений было много. Об одной из таких я и хочу рассказать. А именно — как использовать массивно-парралельные вычисления для компенсации дрожания камеры в реальном времени, или почему SURF подходит не всегда. Добро пожаловать под кат.
Читать полностью »

Введение

Я описываю результаты применения способов оптимизации вычислений на CUDA при моделировании плазмы. Вычисления производятся с использованием Java-привязки к CUDA (JCUDA) [1] на GT630 (Kepler). Моделирование происходит как решение задачи Коши — задание значений параметров в начальный момент времени, затем приращение времени и перерасчет всех уравнений, и т.д. многократно. Вычисления происходят в двойной точности (double). Правильность полученных результатов подтверждена вычислениями на CPU без JCUDA.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js