Рубрика «computer vision» - 9

Привет!

Сегодня я хочу рассказать о второй части проекта сервиса для идентификации и классификации произведений искусства. Напомню, что мы решали две основные задачи:

  1. поиск картины в базе данных по фотографии, сделанной мобильным телефоном;
  2. определение стиля и жанра картины, которой нет в базе данных.

Сегодня мы рассмотрим применение сверточной нейронной сети для классификации изображений по стилю и жанру.

Глубокое обучение для определения стиля и жанра картин - 1

Поможем Даше разобраться в современном искусстве?

Читать полностью »

Вам нужно автоматизировать огромное количество фотограмметрических сканов? Тогда у меня для вас хорошие новости.

В видео показана программа для фотограмметрии Meshroom с открытым исходным кодом. Этот проект в разных формах существует уже довольно давно, но недавно разработчики выпустили двоичные файлы, поэтому их можно просто скачать и использовать. В ролике продемонстрировано использование GUI для загрузки изображений, их обработки, изменения параметров и т.д. Рекомендую вам попробовать эту программу в действии.

Но меня интересует полная автоматизация. Если у вас есть сканирующая установка, на которой вы делаете по 100 и больше сканов в день, то необходимо полностью автоматизированное решение для пакетной обработки этих файлов. Данный пост является руководством и/или туториалом по решению этой задачи.
Читать полностью »

Одна из важных подзадач видеоаналитики — слежение за объектами на видео. Она не настолько примитивна, чтобы пришлось спускаться на попиксельный уровень, но и не настолько сложна, чтобы однозначно требовать для решения многослойную нейронную сеть. Трекинг может использоваться как самоцель, так и в составе других алгоритмов:

  • Подсчёт уникальных людей, зашедших в определённую зону или перешедших через границу в кадре
  • Определение типичных маршрутов машин на стоянке и людей в магазине
  • Автоматический поворот камеры видеонаблюдения при смещении объекта

Даже не глядя в литературу, я могу с уверенностью сказать, что наилучший способ решить поставленную задачу — использовать нейронные сети. В общем-то, дальше можно было бы ничего и не писать, но не всегда в задачу можно кинуться парой GTX 1080Ti. Кому интересно, как отслеживают объекты на видео в таких случаях, прошу под кат. Я попробую не просто объяснить, как работают ASEF и MOSSE трекеры, а подвести вас к решению, чтобы формулы показались очевидными.
Читать полностью »

Привет! Сегодня я хочу рассказать о том, как глубокое обучение помогает нам лучше разобраться в искусстве. Статья разбита на части в соответствии с задачами, которые мы решали:

  1. поиск картины в базе данных по фотографии, сделанной мобильным телефоном;
  2. определение стиля и жанра картины, которой нет в базе данных.

Все это должно было стать частью сервиса БД Артхив и его мобильных приложений.

Задача идентификации картин состояла в том, чтобы по изображению, приходящему от мобильного приложения, найти в базе данных соответствующую картину, затратив на это менее одной секунды. Обработка целиком в мобильном устройстве была исключена на этапе предпроектного исследования. Кроме того, оказалось, что невозможно трудно гарантированно выполнить на мобильном устройстве отделение картины от фона в реальных условиях съемки. Поэтому мы решили, что наш сервис будет принимать на вход фотографию с мобильного телефона целиком, со всеми искажениями, шумами и возможным частичным перекрытием.

Глубокое обучение для идентификации картин - 1

Поможем Даше найти эти картины в базе из более чем 200 000 изображений?

Читать полностью »

Moscow Data Science Major: анонс и регистрация - 1

1 сентября Mail.Ru Group и сообщество Open Data Science проведут крупнейший митап Moscow Data Science Major. Событие состоит из пяти тематических блоков докладов, одной ML-тренировки и целого зала для нетворкинга и знакомств.

Знакомьтесь с программой и регистрируйтесь! Вход на событие бесплатный, по одобренной регистрации.
Читать полностью »

В конце зимы этого года прошло соревнование IEEE's Signal Processing Society — Camera Model Identification. Я участвовал в этом командном соревновании в качестве ментора. Об альтернативном способе формирования команды, решении и втором этапе под катом
kaggle: IEEE's Camera Model Identification - 1
Читать полностью »

В статье мы расскажем о применении свёрточных нейронных сетей для решения практической бизнес-задачи восстановления реалограммы по фотографии полок с товарами. С помощью Tensorflow Object Detection API мы натренируем модель поиска/локализации. Улучшим качество поиска мелких товаров на фотографиях с большим разрешением с помощью плавающего окна и алгоритма подавления немаксимумов. На Keras реализуем классификатор товаров по брендам. Параллельно будем сравнивать подходы и результаты с решениями 4 летней давности. Все данные, использованные в статье, доступны для скачивания, а полностью рабочий код есть на GitHub и оформлен в виде tutorial.
 
Распознавание товаров на полках с помощью нейронных сетей на технологиях Keras и Tensorflow Object Detection API - 1
Читать полностью »

Машинное зрение – очень актуальная тема в наши дни. Для решения задачи по распознаванию магазинных ценников с использованием нейронных сетей мы выбрали фреймворк TensorFlow.

В статье пойдет речь именно о том, как с его помощью локализовать и идентифицировать несколько объектов на одном магазинном ценнике, а также распознать его содержимое. Похожая задача распознавания ценников IKEA уже решалась на Хабре с применением классических инструментов обработки изображений, доступных в библиотеке OpenCV.

Отдельно хотелось бы отметить, что решение может работать как на платформе SAP HANA в связке с Tensorflow Serving, так и на SAP Cloud Platform.

Задача распознавания цены товара актуальна и для покупателей, которые хотят «шарить» цены друг с другом и выбирать магазин для покупок, и для ритейлеров — они хотят узнавать про цены конкурентов в режиме реального времени.

Хватит лирики – гоу в технику!
Читать полностью »

Недавно на Kaggle закончилось соревнование iMaterialist Challenge (Furniture), задачей в котором было классифицировать изображения на 128 видов мебели и предметов быта (так называемая fine-grained classification, где классы очень близки друг к другу).

В этой статье я опишу подход, который принес нам с m0rtido третье место, но прежде, чем переходить к сути, предлагаю воспользоваться для решения этой задачи естественной нейросетью в голове и разделить стулья на фото ниже на три класса.

iMaterialist Furniture Challenge или 50 оттенков стульев - 1
Читать полностью »

Почти два века существования фотоаппарата, не должны, казалось бы, оставить инженерам шанса добавить «что-то еще». Современные камеры снимают высококачественное видео, выгружают фотографии в облако и привязывают гео-метки. Мы можем снимать панорамы и 360°, следить за звездами и замедлять время. Но прогресс не стоит на месте, а мчится в будущее, подогреваемый пытливыми умами.

image test

Технология, о которой пойдет речь в сегодня, не является новой по своей сути. Но способ, которым она реализована, определенно заслуживает внимания. Речь пойдет об интересном light-field объективе, который можно будет использовать с любой DSLR камерой.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js