В первой части мы ознакомились с методами доменной адаптации с помощью глубоко обучения. Поговорили об основных датасетах, а также о подходах discrepancy-based и adversarial-based non-generative. Эти методы хорошо себя показывают для некоторых задач. А в этот раз мы разберём наиболее сложные и перспективные adversarial-based методы: generative models, а также алгоритмы, показывающие наилучшие результаты на датасете VisDA (адаптации с синтетических данных под реальные фотографии).
Рубрика «computer vision» - 8
Обзор основных методов Deep Domain Adaptation (Часть 2)
2018-11-28 в 8:44, admin, рубрики: computer vision, deep learning, domain adaptation, machine learning, Блог компании Mail.Ru Group, искусственный интеллект, машинное обучение, обработка изображенийНочью спит спокойно мама — мы собираем OpenCV для Raspbian’a
2018-11-23 в 22:28, admin, рубрики: computer vision, deep learning, diy или сделай сам, github, open source, opencv, python, Raspberry Pi, Разработка на Raspberry PiПоследние пару недель были непростыми для нашей команды. Выпускали OpenCV 4, а вместе с ним готовились к Intel's OpenVINO toolkit R4, в состав которого входит OpenCV. Думаешь, отвлекусь на время, посмотрю, как обычно, форумы про OpenCV, да комментарии пользователей, и тут на тебе, модно стало говорить что OpenCV не IoT, что под Raspberry Pi собрать — припоя не хватает, что на ночь make -j2
ставить — утром будет готово, если повезёт.
Поэтому предлагаю дружно взяться за руки и посмотреть, как же можно собирать библиотеку OpenCV для 32-битной операционной системы, исполняемой на ARM процессоре, используя ресурсы машины с 64-битной OS, движимой отличной архитектурой CPU. Колдовство Кросс-компиляция, не иначе!
Обзор основных методов Deep Domain Adaptation (Часть 1)
2018-11-22 в 7:45, admin, рубрики: computer vision, deep learning, domain adaptation, machine learning, Блог компании Mail.Ru Group, машинное обучение, обработка изображенийРазвитие глубоких нейронных сетей для распознавания изображений вдыхает новую жизнь в уже известные области исследования в машинном обучении. Одной из таких областей является доменная адаптация (domain adaptation). Суть этой адаптации заключается в обучении модели на данных из домена-источника (source domain) так, чтобы она показывала сравнимое качество на целевом домене (target domain). Например, source domain может представлять собой синтетические данные, которые можно «дёшево» сгенерировать, а target domain — фотографии пользователей. Тогда задача domain adaptation заключается в тренировке модели на синтетических данных, которая будет хорошо работать с «реальными» объектами.
В группе машинного зрения Vision@Mail.Ru мы работаем над различными прикладными задачами, и среди них часто встречаются такие, для которых мало тренировочных данных. В этих случаях сильно может помочь генерация синтетических данных и адаптация обученной на них модели. Хорошим прикладным примером такого подхода является задача детектирования и распознавания товаров на полках в магазине. Получение фотографий таких полок и их разметка довольно трудозатратны, зато их можно достаточно просто сгенерировать. Поэтому мы решил глубже погрузиться в тему доменной адаптации.
Использование камеры Fish eye на Raspberry Pi 3 с ROS — часть 1
2018-11-17 в 15:37, admin, рубрики: computer vision, fisheye, Raspberry Pi, робототехникаДобрый день уважаемые читатели Хабра. Несколько лет назад я писал об использовании камеры Raspberry Pi Camera Board на Raspberry Pi в связке с ROS. В этой и следующей статьях я бы хотел рассказать об использовании широкоугольной камеры типа fish eye на Raspberry Pi 3 с установленной Ubuntu 16.04. Кому интересно прошу под кат.
Читать полностью »
Как мы заменили спортивного скаута нейронной сетью
2018-11-16 в 7:00, admin, рубрики: computer vision, deep learning, image processing, neural networks, segmentation, Алгоритмы, Блог компании Constanta, искусственный интеллект, машинное обучение, обработка изображений
Да, действительно, мы смогли заменить нейронной сетью спортивного скаута и стали автоматически собирать данные об игре. И теперь знаем о спортивном состязании больше присутствующего на нем зрителя, а иногда и судьи.
Читать полностью »
Следование линии на основе OpenCV
2018-10-23 в 14:00, admin, рубрики: artificial intelligence, computer vision, opencv, python, Raspberry Pi, robotics, self-driving car, искусственный интеллект, обработка изображений, Разработка на Raspberry Pi, робототехника, роботыСейчас очень популярны курсы по созданию автопилотов для машин. Вот эта нано-степень от Udacity — самый наверное известный вариант.
Много людей по нему учатся и выкладывают свои решения. Я тоже не смог пройти мимо и увлекся.
Разница в том, что курс предполагает разработку алгоритма на основе предоставляемых данных, а я делал все для своего робота.
Читать полностью »
Как распознавание лиц помогает находить тестовые телефоны
2018-10-15 в 10:34, admin, рубрики: AR, ARuco, computer vision, CV, face recognition, opencv, python, tkinter, Анализ и проектирование систем, Блог компании EastBanc Technologies, инфраструктура, Работа с видео, система контроля устройств, смартфоныПривет! В EastBanc Technologies ведётся большое количество проектов, связанных с мобильной разработкой. В связи с чем необходим целый зоопарк устройств для тестирования на всех этапах. И, что характерно, каждый отдельный девайс постоянно оказывается нужен самым разным людям, а найти его даже в одном отделе мобильной разработки из нескольких десятков человек — это целая история. Не говоря уже о том, что есть тестировщики, дизайнеры, PM’ы, в конце концов!
И чтобы не потерять телефон, а четко знать, где он и с кем, мы используем онлайн-базу, которая распознает сотрудников по лицам. Сейчас расскажем, как мы к этому пришли и реализовали её.
Как Яндекс применил компьютерное зрение для повышения качества видеотрансляций. Технология DeepHD
2018-09-25 в 7:05, admin, рубрики: computer vision, deephd, Блог компании Яндекс, искусственный интеллект, Компьютерное зрение, машинное обучение, обработка изображений, яндексКогда люди ищут в интернете картинку или видео, они часто прибавляют к запросу фразу «в хорошем качестве». Под качеством обычно имеется в виду разрешение — пользователи хотят, чтобы изображение было большим и при этом хорошо выглядело на экране современного компьютера, смартфона или телевизора. Но что делать, если источника в хорошем качестве просто не существует?
Сегодня мы расскажем читателям Хабра о том, как с помощью нейронных сетей нам удается повышать разрешение видео в режиме реального времени. Вы также узнаете, чем отличается теоретический подход к решению этой задачи от практического. Если вам не интересны технические детали, то можно смело пролистать пост – в конце вас ждут примеры нашей работы.
В интернете много видеоконтента в низком качестве и разрешении. Это могут быть фильмы, снятые десятки лет назад, или трансляции тв-каналов, которые по разным причинам проводятся не в лучшем качестве. Когда пользователи растягивают такое видео на весь экран, то изображение становится мутным и нечётким. Идеальным решением для старых фильмов было бы найти оригинал плёнки, отсканировать на современном оборудовании и отреставрировать вручную, но это не всегда возможно. С трансляциями всё ещё сложнее – их нужно обрабатывать в прямом эфире. В связи с этим наиболее приемлемый для нас вариант работы — увеличивать разрешение и вычищать артефакты, используя технологии компьютерного зрения.
Создаем свой датасет с пришельцами
2018-09-17 в 10:36, admin, рубрики: big data, computer vision, data mining, dataset, deep learning, python, segmentation, машинное обучение, обработка изображений, разметка изображений, фрилансерыСегментацией людей с помощью нейронных сетей уже никого не удивишь. Есть много приложений, таких как Sticky Ai, Teleport Live, Instagram, которые позволяют выполнять такую сложную задачу на мобильном телефоне в реалтайме.
Итак, предположим планета Земля столкнулась с внеземными цивилизациями. И от пришельцев из звездной системы Альфа Центавра поступает запрос на разработку нового продукта. Им очень понравилось приложение Sticky Ai, которое позволяет вырезать людей и делать стикеры, поэтому они хотят портировать приложение на свой межгалактический рынок.
Пицца аля-semi-supervised
2018-09-13 в 11:05, admin, рубрики: computer vision, DBrain, deep learning, image processing, kaggle, pizza, python, segmentation, Блог компании Open Data Science, машинное обучение, обработка изображенийВ этой статье я бы хотел рассказать про некоторые приемы работы с данными при обучении модели. В частности, как натянуть сегментацию объектов на ббоксы, а также как обучить модель и получить разметку датасета, разметив всего несколько сэмплов.
Читать полностью »