Рубрика «computer vision» - 5

How we made landmark recognition in Cloud Mail.ru, and why - 1

With the advent of mobile phones with high-quality cameras, we started making more and more pictures and videos of bright and memorable moments in our lives. Many of us have photo archives that extend back over decades and comprise thousands of pictures which makes them increasingly difficult to navigate through. Just remember how long it took to find a picture of interest just a few years ago.

One of Mail.ru Cloud’s objectives is to provide the handiest means for accessing and searching your own photo and video archives. For this purpose, we at Mail.ru Computer Vision Team have created and implemented systems for smart image processing: search by object, by scene, by face, etc. Another spectacular technology is landmark recognition. Today, I am going to tell you how we made this a reality using Deep Learning.
Читать полностью »

Сообщество ML-REPA приглашает на открытый митап по вопросам воспроизводимости и управлению экспериментами в computer vision, который пройдет 15 августа в офисе Райффайзенбанк в Нагатино.

На митапе будем разбираться с особенностями обеспечения воспроизводимости экспериментов в Computer Vision, автоматизации пайплайнов и версионирование моделей. Где может пригодиться DVC или MLFlow? А где лучше написать свой “велосипед“? Также глубже посмотрим на реализацию Catalyst и его применение.

Data and Models Version control in Computer Vision meetup - 1
Читать полностью »

Распознавание объектов в режиме реального времени на iOS с помощью YOLOv3 - 1

Всем привет!

В данной статье мы напишем небольшую программу для решения задачи детектирования и распознавания объектов (object detection) в режиме реального времени. Программа будет написана на языке программирования Swift под платформу iOS. Для детектирования объектов будем использовать свёрточную нейронную сеть с архитектурой под названием YOLOv3. В статье мы научимся работать в iOS с нейронными сетями с помощью фреймворка CoreML, немного разберемся, что из себя представляет сеть YOLOv3 и как использовать и обрабатывать выходы данной сети. Так же проверим работу программы и сравним несколько вариаций YOLOv3: YOLOv3-tiny и YOLOv3-416.

Исходники будут доступны в конце статьи, поэтому все желающие смогут протестировать работу нейронной сети у себя на устройстве.
Читать полностью »

Опыт моделеварения от команды Computer Vision Mail.ru - 1

Меня зовут Эдуард Тянтов, я руковожу командой Computer Vision в Mail.ru Group. За несколько лет существования наша команда решила десятки задач компьютерного зрения, и сегодня расскажу вам о том, какие методики мы используем для успешного создания моделей машинного обучения, которые работают на широком спектре задач. Поделюсь трюками, которые могут ускорить получение модели на всех этапах: постановка задачи, подготовка данных, обучение и развертывание в продакшен.
Читать полностью »

В конце июня Новосибирск второй раз принимал HighLoad++. Если в прошлом году эффект новинки сыграл свою немалую роль в том, что все всем были довольны, то в этот раз нам нужно было подготовиться гораздо тщательнее, чтобы сохранить и превзойти впечатление. В первую очередь с утроенной силой мы взялись за главное — программу. Теперь, когда выступления состоялись и даже уже выборочно пересмотрены по второму кругу, собраны и обработаны отзывы участников конференции, можно уверенно заявить, что удалась она на славу. 

Основу HighLoad++ Siberia составили 38 отличных докладов, полных опыта и глубочайшей экспертизы. Международные гиганты и региональные компании — все делились опытом работы с задачами, для решения которых стандартных средств просто не существует. А особенной конференцию сделали люди. Мы честно пытались понять, в чем дело, и как сделать настолько же душевные мероприятия в других местах, но нет — за непередаваемой дружественной атмосферой придется снова ехать в Сибирь, и мы только за. К тому же мы уже думаем над новинками.

А мишка-то, похоже, высоконагруженный - 1

Медведя привезли с собой, ни один представитель местной фауны не пострадал.
Читать полностью »

Нейронная сеть может опознать котика на фотографии, найти диван, улучшить видеозапись, нарисовать картинку из щенят или простого наброска. К этому мы уже привыкли. Новости о нейросетях появляются почти каждый день и стали обыденными. Компании Grid Dynamics поставили задачу не обыденную, а сложную — научить нейросеть находить специфический шуруп или болт в огромном каталоге интернет-магазина по одной фотографии. Задачка сложнее, чем найти котика.

Как мы обучили нейронную сеть классифицировать шурупы - 1

Проблема интернет-магазина шурупов — в ассортименте. Тысячи или десятки тысяч моделей. У каждого шурупа свое описание и характеристики, поэтому на фильтры нет надежды. Что делать? Искать вручную или искать в гипермаркете на полках? В обоих случаях это потеря времени. В итоге клиент устанет и пойдет забивать гвоздь. Чтобы помочь ему, воспользуемся нейросетью. Если она может находить котиков или диваны, то пусть занимается чем-то полезным — подбирает шурупы и болты. Как научить нейросеть подбирать для пользователя шурупы быстро и точно, расскажем в расшифровке доклада Марии Мацкевичус, которая в компании Grid Dynamics занимается анализом данных и машинным обучением.
Читать полностью »

Продолжаем постигать современную магию (компьютерное зрение). Часть 2 не значит, что нужно сначала читать часть 1. Часть 2 значит, что теперь всё серьёзно — мы хотим понять всю мощь нейросетей в зрении. Детектирование, трекинг, сегментация, оценка позы, распознавание действий… Самые модные и крутые архитектуры, сотни слоёв и десятки гениальных идей уже ждут вас под катом!

Вижу, значит существую: обзор Deep Learning в Computer Vision (часть 2) - 1
Читать полностью »

Между идеальным алгоритмом машинного обучения в вакууме и его применением на реальных данных часто лежит пропасть. Вроде бы берешь статью: алгоритм есть, сходимость для данных такого-то типа есть — бери и применяй. Но почему-то оказывается, что твоих данных недостаточно для обучения, да и отличаются они от модельных из статьи, потому что настоящие, не синтетические.

Обычное дело в обосновании алгоритма ввести допущения о чистоте данных и их распределении, которых в реальной жизни не найдёшь. Например, автор статьи экспериментирует на фотографиях взрослых знаменитостей, и все у него замечательно распознается и классифицируется, а в нашем реальном примере попадаются еще и дети, и мультяшные персонажи, и на них всё внезапно ломается. Но есть люди, которые умеют с этим справляться, да так, что пропасть между теорией и практикой перестает казаться неприступной, и, стоит показать как, сразу находятся и другие желающие ее преодолеть.

Используем данные на практике - 1
Читать полностью »

Привет.

Вы знали, что платформы для размещения объявлений часто копируют контент у конкурентов, чтобы увеличить количество объявлений у себя? Они делают это так: обзванивают продавцов и предлагают им разместиться на своей платформе. А иногда и вовсе копируют объявления без разрешения пользователей. Авито — популярная площадка, и мы часто сталкиваемся с такой недобросовестной конкуренцией. О том, как мы боремся с этим явлением, читайте под катом.

Как мы боремся с копированием контента, или первая adversarial attack в проде - 1

Читать полностью »

Как и зачем мы делали распознавание достопримечательностей в Облаке Mail.ru - 1

С появлением качественных камер в мобильных телефонах мы все больше и чаще фотографируем, снимаем видео ярких и важных моментов нашей жизни. У многих из нас фотоархивы насчитывают десятки лет и тысячи фотографий, ориентироваться в которых становится все труднее. Вспомните, сколько времени зачастую занимал поиск нужной фотографии несколько лет назад.

Одной из целей Облака Mail.ru является обеспечение наиболее удобного доступа и поиска по своему фото и видеоархиву. Для этого мы — команда машинного зрения Mail.ru — создали и внедрили системы «умной» обработки фотографий: поиск по объектам, сценам, лицам и др. Еще одной такой яркой технологией является распознавание достопримечательностей. И сегодня я расскажу про то, как с помощью Deep Learning мы решили эту задачу.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js