Рубрика «computer vision» - 4

«Breakout-YOLO»: знакомимся с шустрой object-detection моделью, играя в классический «Арканоид» - 1

Всем привет! Весенний семестр для некоторых студентов 3-го курса ФУПМ МФТИ ознаменовался сдачей проектов по курсу «Методы оптимизации». Каждый должен был выделить интересную для себя тему (или придумать свою) и воплотить её в жизнь в виде кода, научной статьи, численного эксперимента или даже бота в Telegram.

Жёстких ограничений на выбор темы не было, поэтому можно было дать разгуляться фантазии. You Only Live Once! — воскликнул я, и решил использовать эту возможность, чтобы привнести немного огня в бессмертную классику.Читать полностью »

Среди всего многообразия задач Computer Vision есть одна, которая стоит особняком. К ней обычно стараются лишний раз не притрагиваться. И, если не дай бог работает, — не ворошить.
У неё нет общего решения. Практически для каждого применения существующие алгоритмы надо тюнинговать, переобучать, или судорожно копаться в куче матриц и дебрях логики.
Самая сложная задача в Computer Vision - 1
Статья о том как делать трекинг. Где он используется, какие есть разновидности. Как сделать стабильное решение.
Читать полностью »

Компьютерное зрение на WebRTC-сервере с аппаратным ускорением от Intel OWT - 1


WebRTC упростил (в большинстве своем) получение и отправку видеопотоков в реальном времени. А значит, можно немного поразвлекаться с ними при помощи машинного обучения. В прошлом месяце я показал, как запустить компьютерное зрение (Computer Vision – CV) локально в браузере. Как я уже упоминал, локально – это, конечно, хорошо, но иногда требуется более высокая производительность, и для этого нам понадобится удаленный сервер. В данном посте я расскажу о том, как запускать серверные модели OpenCV с аппаратным ускорением на чипсетах Intel с помощью Open WebRTC Toolkit (OWT) с открытым исходным кодом.
Читать полностью »

Пролог

По сети сейчас гуляет видео — как автопилот Теслы видит дорогу.
У меня давно чесались руки транслировать видео, обогащенное детектором, да и в реальном времени.

Видео с облачным детектором объектов на Raspberry Pi - 1

Проблема в том, что транслировать видео я хочу с Raspberry, а производительность нейросетевого детектора на ней оставляет желать лучшего.
Читать полностью »

Около года назад разработчики PyTorch представили сообществу TorchScript — инструмент, который позволяет с помощью пары строк кода и нескольких щелчков мыши сделать из пайплайна на питоне отчуждаемое решение, которое можно встроить в систему на C++. Ниже я делюсь опытом его использования и постараюсь описать встречающиеся на этом пути подводные камни. Особенное внимание уделю реализации проекта на Windows, поскольку, хотя исследования в ML обычно делаются на Ubuntu, конечное решение часто (внезапно!) требуется под "окошками".

Примеры кода для экспорта модели и проекта на C++, использующего модель, можно найти в репозиториии на GitHub.

Как подружить PyTorch и C++. Используем TorchScript - 1

Читать полностью »

Прошло лет пять с того момента как нейронные сетки начали втыкать в каждую дырку. Есть масса примеров где всё работает почти идеально — биометрия, распознавание технической информации (номера, коды), классификация и поиск в массиве данных.

Есть области где всё хуже, но сейчас идёт большой прогресс — речь/распознавание текстов, переводы.

Машинное зрение и медицина - 1

Но есть области загадочные. Вроде как и прогресс есть. И статьи регулярно выходят. Только вот до практического применения как-то особо и не доходит.

Давайте разберём то, как нейронные сеточки и машинное зрение работает в медицине.
Читать полностью »

Компьютерное зрение как альтернатива офисным пропускам - 1

Сегодня я расскажу, как мы делали в офисе пропускную систему на основе сервиса распознавания лиц Vision. Сначала небольшая предыстория. Как в любом почтовом сервисе, мы создали систему антиспама. Такие системы сейчас делаются на основе машинного обучения, у нас им занимается мощная команда. А где машинное обучение, там и компьютерное зрение. Поэтому сервис Vision возник вполне органично и естественно.

Параллельно с этим несколько лет назад мы запустили Облако — надёжное хранилище файлов с геораспределением по дата-центрам, которым могут пользоваться как частные лица, так и компании. Со временем у нас появилось «Облако для бизнеса», которое не только хранит файлы, но и позволяет заказывать виртуальные машины. Постепенно это превратилось в MCS — Mail.ru Cloud Solutions, куда в качестве одного из сервисов очень органично вписался Vision.
Читать полностью »

Всем привет! В этом посте я хочу рассказать вам о моей летней стажировке в ABBYY. Постараюсь осветить все моменты, которые обычно интересны студентам и начинающим разработчикам при выборе компании. Надеюсь, что кому-то данный пост поможет определиться с планами на следующее лето. В общем, поехали!

image

Для начала расскажу немного о себе. Меня зовут Женя, на момент подачи заявки на стажировку я заканчивал 3 курс МФТИ, Факультет инноваций и высоких технологий (сейчас может быть известен как Физтех-школа прикладной математики и информатики). Мне хотелось выбрать компанию, в которой можно получить опыт работы в области компьютерного зрения: картинки, нейронные сети и вот это вот все. Собственно, с выбором я не прогадал – ABBYY действительно для этого отлично подходит, но об этом позже.
Читать полностью »

Создаем датасет для распознавания счетчиков на Яндекс.Толоке - 1

Как-то два года назад, случайно включив телевизор, я увидел интересный сюжет в программе "Вести". В нём рассказывали о том, что департамент информационных технологий Москвы создает нейросеть, которая будет считывать показания счетчиков воды по фотографиям. В сюжете телеведущий попросил горожан помочь проекту и прислать снимки своих счетчиков на портал mos.ru, чтобы на них обучить нейронную сеть. 

Если Вы — департамент Москвы, то выпустить ролик на федеральном канале и попросить людей прислать изображения счетчиков — не очень большая проблема. Но что делать, если Вы — маленький стартап, и сделать рекламу на телеканале не можете? Как получить 50000 изображений счетчиков в таком случае?Читать полностью »

Вот и наступил новый этап в развии Raspberry-танка.

В предыдущей серии оказалось, что семантическая сегментация из коробки не по зубам Raspberry.

Мозговой штурм и комментарии позволили определить следующие направления развития:

  • обучить собственную E-net сеть под нужный размер картинок
  • передать запуск нейросети с самой Raspberry на специальную железку, из которых наиболее часто упоминался Intel Movidius (он же Neural Compute Stick aka NCS).

Приделать к роботу новую железку — это же самое интересное в роботехнике, поэтому кропотливая работа по обучению нейросети оказалась отложенной до лучших времен.

Несколько дней — и интеловская чудо-железка у меня в руках.

Она довольно большая, и в нижний USB разъем малинки ее не воткнешь. Учитывая, что правые USB порты были заслонены штативом камеры, а верхний левый занят GPS модулем, вариантов оставалось не то, чтобы много.

В итоге, GPS был посажен на кабель, переведен вниз, и кабель обернут вокруг штатива, а на его место зашел NCS.

На этом hardware часть была завершена.

Робот-танк на Raspberry Pi с Intel Neural Computer Stick 2 - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js