Летом прошлого года закончилось соревнование на площадке kaggle, которое было посвящено классификации спутниковых снимков лесов Амазонки. Наша команда заняла 7 место из 900+ участников. Не смотря на то, что соревнование закончилось давно, почти все приемы нашего решения применимы до сих пор, причём не только для соревнований, но и для обучения нейросетей для прода. За подробностями под кат.
Читать полностью »
Рубрика «computer vision» - 10
Kaggle: Amazon from Space — трюки и хаки при обучении нейросетей
2018-06-14 в 11:01, admin, рубрики: computer vision, kaggle, machine learning, python, Алгоритмы, Блог компании Open Data Science, машинное обучение, обработка изображенийКалибровка камеры Intel RealSense d435 с помощью OpenCV2 и ROS
2018-06-01 в 14:39, admin, рубрики: computer vision, opencv, python, realsense, ROS, машинное обучение, робототехникаВсем привет!
Хочу поделиться опытом работы с камерой Intel RealSense, модель d435. Как известно, многие алгоритмы машинного зрения требуют предварительной калибровки камеры. Так уж получилось, что мы на нашем проекте используем ROS для сборки отдельных компонентов автоматизированной интеллигентной системы. Однако, проштудировав русскоязычный интернет, я не обнаружил каких-либо толковых туториалов на эту тему. Данная публикация призвана восполнить этот пробел.
Распознавание сцен на изображениях с помощью глубоких свёрточных нейронных сетей
2018-05-24 в 10:56, admin, рубрики: computer vision, deep learning, machine learning, scene recognition, Блог компании Mail.Ru Group, машинное обучение, обработка изображенийМногие продукты нашей компании работают с изображениями. Некоторое время назад мы решили добавить в такие сервисы «умный» поиск по фотографиям, их теггирование. Такая функциональность будет входить в Computer Vision API для дальнейшего использования в продуктах компании. Одним из важных способов теггирования изображений является теггирование по сценам, когда в результате мы получаем что-то такое:
ComputerVision и с чем его едят
2018-03-22 в 11:02, admin, рубрики: computer vision, data mining, image recognition, machine learning, Алгоритмы, Блог компании FunCorp, машинное обучение, обработка изображенийС развитием компьютерных мощностей и появлением множества технологий обработки изображений всё чаще стал возникать вопрос: а можно ли научить машину видеть и распознавать образы? Например, отличать кошку от собаки или даже бладхаунда от бассета? О точности распознавания говорить не приходится: наш мозг несравнимо быстрее может понять, что перед нами, при условии, что раньше мы получили достаточно сведений об объекте. Т.е. даже видя только часть собаки, мы можем с уверенностью сказать, что это собака. А если ты — собаковод, то легко определишь и породу собаки. Но как научить машину различать их? Какие существуют алгоритмы? А можно ли обмануть машину? (Спойлер: конечно можно! Точно так же, как и наш мозг.) Попробуем осмыслить все эти вопросы и по возможности ответить на них. Итак, приступим.
Читать полностью »
Можно ли научить искусственный интеллект шутить?
2018-03-19 в 7:12, admin, рубрики: big data, cnn, computer vision, deep learning, funcorp, machine learning, Алгоритмы, Блог компании FunCorp, глубокое обучение, машинное обучение, нейронные сети, обработка изображенийВ последнее время машины одержали ряд убедительных побед над людьми: они уже лучше играют в го, шахматы и даже в Dota 2. Алгоритмы сочиняют музыку и пишут стихи. Учёные и предприниматели всего мира дают прогнозы по поводу будущего, в котором искусственный интеллект сильно превзойдёт человека. С большой вероятностью через несколько десятков лет мы будем жить в мире, в котором роботы не только водят автомобили и работают на заводах, но и развлекают нас. Одна из важных составляющих нашей жизни — юмор. Принято считать, что только человек может придумывать шутки. Несмотря на это, многие ученые, инженеры и даже простые обыватели задаются вопросом: можно ли научить компьютер шутить?
Компания Gentleminds, разработчик систем машинного обучения и компьютерного зрения, совместно с FunCorp попробовали создать генератор весёлых подписей к картинкам, используя базу мемов iFunny. Поскольку приложение англоязычное и используется преимущественно в США, подписи будут на английском. Подробности под катом.
Читать полностью »
Приглашение на Meetup по компьютерному зрению в Avito, 28 октября
2017-10-18 в 12:09, admin, рубрики: computer vision, data science, meetups, Алгоритмы, Блог компании Avito, машинное обучение, обработка изображенийМы рады пригласить вас на встречу специалистов по анализу данных, которая пройдет в московском офисе Avito 28-го октября. Митап посвящен компьютерному зрению. Вы сможете узнать о передовых достижениях в задачах распознавания лиц и сегментации изображений, о real-time адаптации нейросетевых и классических алгоритмов, а также мы представим наш сервис — AvitoNet. Подробная программа и ссылка на регистрацию под катом.
Смена пола и расы на селфи с помощью нейросетей
2017-10-16 в 11:01, admin, рубрики: computer vision, cyclegan, deep learning, GAN, neural network, patchgan, pytorch, Алгоритмы, Блог компании Open Data Science, математика, машинное обучение, обработка изображенийПривет! Сегодня я хочу рассказать вам, как можно изменить свое лицо на фото, используя довольно сложный пайплайн из нескольких генеративных нейросетей и не только. Модные недавно приложения по превращению себя в даму или дедушку работают проще, потому что нейросети медленные, да и качество, которое можно получить классическими методами компьютерного зрения, и так хорошее. Тем не менее, предложенный способ мне кажется очень перспективным. Под катом будет мало кода, зато много картинок, ссылок и личного опыта работы с GAN'ами. Читать полностью »
На пути к естественному интеллекту
2017-10-10 в 22:25, admin, рубрики: computer vision, data mining, machine learning, Блог компании JUG.ru Group, машинное обучение, обработка изображенийMachine Learning с каждым днём становится всё больше. Кажется, что любая компания, у которой есть хотя бы пять сотрудников, хочет себе разработать или купить решение на машинном обучении. Считать овец, считать свёклу, считать покупателей, считать товар. Либо прогнозировать всё то же самое.
Формула проста: если цена внедрения ниже, чем ты платишь охраннику — ставь управляемый шлагбаум. Потери от бездельников выше стоимости внедрения биометрической системы учёта времени — внедряй. «Эксперт» берёт взятки за контроль качества продукта? Продублируй его системой контроля качества.
Далеко не всегда можно оценить стоимость разработки. Но зачастую хватает даже порядка, чтобы начать работы и привлечь инвесторов.
Но статья, скорее, не про это. Статья про специалистов по машинному обучению. Про бум специальности, про то, какие люди начинают приходить, как из единого, общего массива специалистов начинают вырисовываться профессии, про то, как сейчас решать ML-задачи.
Читать полностью »
Kaggle: как наши сеточки считали морских львов на Алеутских островах
2017-09-18 в 11:19, admin, рубрики: cnn, computer vision, deep learning, kaggle, machine learning, ods, open data science, python, Алгоритмы, Блог компании Open Data Science, глубокое обучение, машинное обучение, нейронные сети, обработка изображенийПривет, Коллеги!
27 июня закончилось соревнование на Kaggle по подсчёту морских львов (сивучей) на аэрофотоснимках NOAA Fisheries Steller Sea Lions Population Count. В нем состязались 385 команд. Хочу поделиться с вами историей нашего участия в челлендже и (почти) победой в нём.
Сглаживание изображений фильтром анизотропной диффузии Перона и Малика
2017-06-25 в 16:40, admin, рубрики: computer vision, fortran, анизотропная диффузия, выделение границ, математика, машинное зрение, обработка изображений, сглаживание, сегментация, сохранения границ, фильтр Перона и Малика, фильтры изображенийФильтр анизотропной диффузии Перона и Малика — это сглаживающий цифровые изображения фильтр, ключевая особенность которого состоит в том, что при сглаживании он сохраняет и «усиливает» границы областей на изображении.
В статье я кратко рассмотрю зачем нужен этот фильтр, теорию по нему и как его реализовать алгоритмически, приведу код на языке Fortran и примеры сглаженных изображений.
Крайнее левое изображение — оригинальное, справа от оригинального — фильтрованные с различными параметрами.
Читать полностью »