Рубрика «cognitive pilot»

Я начну с революционного: когда мы внедряем Искусственные мозги C-Pilot в сельхозтехнику, мы немного уподобляемся Создателю. Мы Предмет превращаем в думающее и анализирующее Существо, то есть комбайн с Cognitive Agro Pilot начинает видеть и понимать, что происходит вокруг, а также принимать решения по дальнейшим действиям в рамках той производственной задачи, которая перед ним стоит. В каком-то смысле идет создание нового социального слоя тружеников села — слой агроботов с Искусственным Интеллектом C-Pilot, которые обдумывают и решают поставленные человеком агрозадачи.

По сути это зарождающийся слой существ, который надо массово и правильно учить. У человечества были тысячелетия на развитие эволюционного слоя сознания, у роботов это — месяцы. Но для этого надо создать необходимую среду, масштабную фабрику по обучению Искусственных мозгов и подготовки информации для них. В этой статье мы приоткроем тайны Cognitive Data Factory: комбайнa для сбора и переработки данных для агроотрасли.

То по каким учебникам и с какими учителями учатся Ваши дети имеет определяющее значение в их развитии и будущей карьере. Так и в автомотив отрасли — качественные данные и их правильная разметка имеют первостепенное значение для создателей ИИ для беспилотного транспорта и других высокоавтоматизированных систем управления. Cognitive Pilot учится через нашу уникальную Data Factory. Как это устроено внутри?

Как мы создаем Сognitive Agro Data Factory — самый большой нейронный университет в мире - 1
Читать полностью »

image
Один из ранних прототипов, использовавшихся для тестов.

Сразу скажу: крутейший он потому, что единственный из доведённых до опытной эксплуатации автопилотов третьего уровня. А единственный доведённый до опытной эксплуатации он потому, что без наработок по автопилотированию трамваев и чего-то ещё в этот рынок соваться просто нет смысла. Тепловозов довольно много, задача интересная и важная для производств, но не окупается как отдельная. Мы знаем про наработки на эту тему у НИИАС и Siemens, но не знаем, чтобы их трамваи где-то ездили в городской среде, а локомотивы перевозили реальные грузы.

Поскольку у нас уже достаточно много различных наработок и решений с беспилотными трамваями в России и Китае, мы решили провести эксперименты с одним крупным предприятием с большим парком маневровых тепловозов, используемых для доставки сырья к цехам.

Там проблема в том, что движение тепловоза регламентируется множеством сигналов, положениями людей и объектов инфраструктуры, а также командами диспетчера. Машинист должен оставаться предельно внимательным всю смену (примерно 12 часов), в том числе и ночью. В результате он рано или поздно либо пропускает что-то и попадает в аварию, либо кого-то сбивает. Это жизнь, травмы на транспорте случаются, но конкретно в этих ситуациях можно позволить себе ставить на тепловозы радары, потому что встаёт не просто один тепловоз, а целое крупное предприятие. Надолго. Предотвращение столкновений и автопилот могут сильно снизить нагрузку на человека в кабине, и тогда производства не будут вставать.

Модуль на картинке — один из ранних прототипов блока камер, с которого мы начинали. С этого момента он претерпел значительные изменения, но всегда интересно посмотреть, с чего всё начиналось. Сейчас расскажу, как вообще роботы способны ориентироваться на станциях, потому что задача вообще-то нетривиальная.Читать полностью »

Привет!

В общем, есть экспериментальный трамвай, который в рамках испытаний иногда ходил по одному из маршрутов. Автопилот тестируется на закрытой территории, а в городских — активный помощник водителя вагоновожатого. Водитель трамвая едет с руками на управлении, но тестируется именно автономный автопилот. Трамвай визуально не отличается от обычного, потому что мы вместе с производителем запихали приборные блоки далеко под панели и вывели интерфейсы на стандартные экраны. Единственное — у него можно заметить несколько камер под лобовым стеклом, спрятанный под обшивку радар и GPS-датчик на крыше. Да, ещё иногда для целей отладки мы привешиваем лидар.

image

За время испытаний мы узнали, что правила дорожного движения и реальная обстановка на дорогах даже для трамвая — это очень разные вещи.

Вообще трамвай — это идеальная «песочница» для полного автопилота автомобиля. Мы уже сейчас его реализовали. Наши читы:

  • Мы знаем маршрут и имеем гарантию, что наше ТС никуда с него не денется.
  • Можно проехать заранее и разметить точки со светофорами и прочим, чтобы системе было легче их распознавать.
  • Трамвай не может перестроиться из полосы в полосу. Большая часть нагрузки автопилота авто завязана на «куда сейчас отрулить» и тысячи сценариев, а у нас отрулить некуда.
  • Тормозит он почти мгновенно и немного резко, то есть прогнозы движения других автосредств на дороге менее сложные.

С чем реально есть проблемы — это с людьми на остановках, которые стараются пролезть первыми, рискуя жизнью. Читать полностью »

В обычное время механизатор зарабатывает около 30 тысяч рублей в месяц. Но всё резко меняется во время уборки урожая, когда механизатор на время становится оператором комбайна — комбайнёром, за этот промежуток он получит до 150 тысяч рублей. Есть буквально две недели, когда нужно собрать всё, во что вы целый год вкладывали огромное количество денег за работу, удобрения, солярку и так далее. Работать можно примерно с восьми утра (настроить машину, в девять начать) до темноты, потому что роса и ночная влажность резко ухудшают качество зерна. На износ. И на третий-четвёртый день начинаются проблемы с авариями или перемалыванием не того и не так.

Со стороны кажется, что задача — проехать на комбайне по полю «змейкой» и «перемолоть» всю пшеницу или другую культуру. На деле всё далеко не так. Оператор должен следить за сотнями вещей и при этом постоянно смотреть на кромку поля, чтобы двигаться ровно. Представьте себе, что вы едете 12–14 часов по трассе на скорости 120 км/час за человеком, который раз в полчаса неожиданно тормозит. Примерно то же чувствует оператор: работа невероятно монотонная, но при этом постоянно нужно быть готовым к сюрпризу.

image
Сюрприз может выглядеть так. Пока мы ездили «в поля», не видели ни одного целого комбайна без следов сварки.

Фактически комбайнёр следит за процессом обработки зерна (одно рабочее место) и при этом ведёт технику (другое рабочее место). Но только это один человек. Следствие — страдает что-то одно. Поскольку, если плохо вести, можно случайно перемолоть камень или человека на поле, и страдает обычно качество уборки зерна.

Часть работы легко автоматизируется. Сейчас расскажу, что именно мы сделали и как мы модифицируем даже довольно старые комбайны своими роботами. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js